Skip to main content

Agent Based Modeling, Mathematical Formalism for

  • Reference work entry
Computational Complexity

Article Outline

Glossary

Definition of the Subject

Introduction

Existing Mathematical Frameworks

Finite Dynamical Systems

Finite Dynamical Systems as Theoretical and Computational Tools

Mathematical Results on Finite Dynamical Systems

Future Directions

Bibliography

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,500.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Agent‐based simulation:

An agent‐based simulation of a complexsystem is a computer model that consists of a collection ofagents/variables that can take on a typically finite collection ofstates.The state of an agent at a given point in time is determinedthrough a collection of rules that describe the agent's interactionwith other agents.These rules may be deterministic or stochastic.The agent's state depends on the agent's previous state and the stateof a collection of other agents with whom it interacts.

Mathematical framework:

A mathematical framework for agent‐basedsimulation consists of a collection of mathematical objects that areconsidered mathematical abstractions of agent‐based simulations.Thiscollection of objects should be general enough to capture the keyfeatures of most simulations, yet specific enough to allow thedevelopment of a mathematical theory with meaningful results andalgorithms.

Finite dynamical system:

A finite dynamical system isa time‐discrete dynamical system on a finite state set.That is, it isa mapping from a Cartesian product of finitely many copies of a finiteset to itself. This finite set is often considered to be a field.The dynamics is generated by iteration of the mapping.

Bibliography

Primary Literature

  1. Bagrodia RL (1998)Parallel languages for discrete-event simulation models.IEEE Comput Sci Eng 5(2):27–38

    Article  Google Scholar 

  2. Barrett CL, Reidys CM (1999)Elements of a theory of simulation I: Sequential CA over random graphs.Appl Math Comput 98:241–259

    Article  MathSciNet  MATH  Google Scholar 

  3. Barrett CL, Mortveit HS, Reidys CM (2000)Elements of a theory of simulation II: Sequential dynamical systems.Appl Math Comput 107(2–3):121–136

    Article  MathSciNet  MATH  Google Scholar 

  4. Barrett CL, Hunt III HB, Marathe MV, Ravi SS, Rosenkrantz DJ, Stearns RE, Tosic P (2001)Garden of eden and fixed point configurations in sequential dynamical systems.In: Proc International Conference on Combinatorics, Computation and Geometry DM-CCG'2001.pp 95–110

    Google Scholar 

  5. Barrett CL, Mortveit HS, Reidys CM (2001)Elements of a theory of simulation III: Equivalence of SDS.Appl Math Comput 122:325–340

    Article  MathSciNet  MATH  Google Scholar 

  6. Barrett CL, Marathe MV, Smith JP, Ravi SS (2002)A mobility and traffic generation framework for modeling and simulating ad hoc communicationnetworks.In: SAC'02 Madrid, ACM, pp 122–126

    Google Scholar 

  7. Barrett CL, Hunt III HB, Marathe MV, Ravi SS, Rosenkrantz DJ, Stearns RE(2003)On some special classes of sequential dynamical systems.Ann Comb 7(4):381–408

    Article  MathSciNet  MATH  Google Scholar 

  8. Barrett CL, Hunt III HB, Marathe MV, Ravi SS, Rosenkrantz DJ, Stearns RE (2003) Reachability problems for sequential dynamical systems with threshold functions.Theor Comput Sci 295(1–3):41–64

    Article  MathSciNet  MATH  Google Scholar 

  9. Barrett CL, Mortveit HS, Reidys CM (2003)Elements of a theory of computer simulation. IV. sequential dynamical systems: fixed points,invertibility and equivalence.Appl Math Comput 134(1):153–171

    Article  MathSciNet  MATH  Google Scholar 

  10. Barrett CL, Hunt III HB, Marathe MV, Ravi SS, Rosenkrantz DJ, Stearns RE (2006)Complexity of reachability problems for finite discrete sequential dynamical systems.J Comput Syst Sci 72:1317–1345

    Article  MathSciNet  MATH  Google Scholar 

  11. Barrett CL, Hunt III HB, Marathe MV, Ravi SS, Rosenkrantz DJ, Stearns RE, Thakur M (2007)Computational aspects of analyzing social network dynamics.In: Proc International Joint Conference on Artificial Intelligence IJCAI 2007.pp 2268–2273

    Google Scholar 

  12. Barrett CL, Hunt III HB, Marathe MV, Ravi SS, Rosenkrantz DJ, Stearns RE,Thakur M (2007)Predecessor existence problems for finite discrete dynamical systems.Theor Comput Sci 1-2:3–37

    Article  MathSciNet  Google Scholar 

  13. Bartlett R, Garzon M (1993)Monomial cellular automata.Complex Syst 7(5):367–388

    MathSciNet  MATH  Google Scholar 

  14. Bernaschi M, Castiglione F (2002)Selection of escape mutants from immune recognition during hiv infection.Immunol Cell Biol 80:307–313

    Article  Google Scholar 

  15. Bernaschi M, Succi S, Castiglione F (2000)Large-scale cellular automata simulations of the immune system response.Phys Rev E 61:1851–1854

    Article  Google Scholar 

  16. Booch G, Rumbaugh J, Jacobson I (2005)Unified Modeling Language User Guide, 2nd edn.Addison-Wesley, Reading

    Google Scholar 

  17. Brand D, Zafiropulo P (1983)On communicating finite-state machines.J ACM 30:323–342

    Article  MathSciNet  MATH  Google Scholar 

  18. Cartier P, Foata D (1969)Problemes combinatoires de commutation et reárrangements.Lecture Notes in Mathematics, vol 85. Springer, Berlin

    Google Scholar 

  19. Castiglione F, Agur Z (2003)Analyzing hypersensitivity to chemotherapy in a cellular automata model of the immune system. In: Preziosi L (ed)Cancer modeling and simulation. Chapman and Hall/CRC, London

    Google Scholar 

  20. Castiglione F, Bernaschi M, Succi S (1997)Simulating the Immune Response on a Distributed Parallel Computer.Int J Mod Phys C 8:527–545; 10.1142/S0129183197000424

    Article  Google Scholar 

  21. Castiglione F, Duca K, Jarrah A, Laubenbacher R, Hochberg D, Thorley-Lawson D(2007)Simulating Epstein–Barr virus infection with C-ImmSim.Bioinformatics 23(11):1371–1377

    Article  Google Scholar 

  22. Celada F, Seiden P (1992)A computer model of cellular interactions in the immune syste.Immunol Today 13(2):56–62

    Article  Google Scholar 

  23. Celada F, Seiden P (1992) A model for simulating cognate recognition and response in the immune system.J Theor Biol 158:235–270

    Google Scholar 

  24. Celada F, Seiden P (1996)Affinity maturation and hypermutation in a simulation of the humoral immune response.Eur J Immunol 26(6):1350–1358

    Article  Google Scholar 

  25. Chaudhuri PP (1997)Additive Cellular Automata. Theory and Applications, vol 1.IEEE Comput Soc Press

    Google Scholar 

  26. Colón-Reyes O, Laubenbacher R, Pareigis B (2004)Boolean monomial dynamical systems.Ann Comb 8:425–439

    Google Scholar 

  27. Colón-Reyes O, Jarrah A, Laubenbacher R, Sturmfels B (2006)Monomial dynamical systems over finite fields.Complex Syst 16(4):333–342

    Google Scholar 

  28. Dawson D (1974)Synchronous and asynchronous reversible Markov systems.Canad Math Bull 17(5):633–649

    Article  MathSciNet  Google Scholar 

  29. Ebeling W, Schweitzer F (2001)Swarms of particle agents with harmonic interactions.Theor Biosci 120–3/4:207–224

    Google Scholar 

  30. Elspas B (1959)The theory of autonomous linear sequential networks.IRE Trans Circuit Theor, pp 45–60

    Google Scholar 

  31. Farmer J, Packard N, Perelson A (1986)The immune system, adaptation, and machine learning.Phys D 2(1–3):187–204

    Article  MathSciNet  Google Scholar 

  32. Frish U, Hasslacher B, Pomeau Y (1986)Lattice-gas automata for the Navier–Stokes equations.Phys Rev Lett 56:1505–1508

    Article  Google Scholar 

  33. Fukś H (2004)Probabilistic cellular automata with conserved quantities.Nonlinearity 17:159–173

    Google Scholar 

  34. Garcia LD, Jarrah AS, Laubenbacher R (2006)Sequential dynamical systems over words.Appl Math Comput 174(1):500–510

    Article  MathSciNet  MATH  Google Scholar 

  35. Gardner M (1970)The fantastic combinations of John Conway's new solitaire game “life”.Sci Am 223:120–123

    Article  Google Scholar 

  36. Gouda M, Chang C (1986)Proving liveness for networks of communicating finite-state machines.ACM Trans Program Lang Syst 8:154–182

    Article  MATH  Google Scholar 

  37. Guo Y, Gong W, Towsley D (2000)Time-stepped hybrid simulation (tshs) for large scale networks.In: INFOCOM 2000. Nineteenth Annual Joint Conference of theIEEE Computer and Communications Societies.Proc. IEEE, vol 2. pp 441–450

    Google Scholar 

  38. Gupta A, Katiyar V (2005)Analyses of shock waves and jams in traffic flow.J Phys A 38:4069–4083

    Article  MathSciNet  MATH  Google Scholar 

  39. Hansson AÅ, Mortveit HS, Reidys CM (2005)On asynchronous cellular automata.Adv Complex Syst 8(4):521–538

    Google Scholar 

  40. Hedlund G (1969)Endomorphisms and automorphisms of the shift dynamical system.Math Syst Theory 3:320–375

    Article  MathSciNet  MATH  Google Scholar 

  41. Hernández-Toledo A (2005)Linear finite dynamical systems.Commun Algebra 33(9):2977–2989

    Google Scholar 

  42. Hopfield J (1982)Neural networks and physical systems with emergent collective computational properties.Proc National Academy of Sciences of the USA79:2554–2588

    Google Scholar 

  43. Ilachinsky A (2001)Cellular Automata: A Discrete Universe.World Scientific, Singapore

    Google Scholar 

  44. Jarrah A, Laubenbacher R, Stillman M, Vera-Licona P (2007)An efficient algorithm for the phase space structure of linear dynamical systems overfinite fields. (submitted)

    Google Scholar 

  45. Jefferson DR (1985)Virtual time.ACM Trans Program Lang Syst 7(3):404–425

    Article  MathSciNet  Google Scholar 

  46. Kari J (2005)Theory of cellular automata: A survey.Theor Comput Sci 334:3–33

    Article  MathSciNet  MATH  Google Scholar 

  47. Keyfitz BL (2004)Hold that light! modeling of traffic flow by differential equations.Stud Math Libr 26:127–153

    MathSciNet  Google Scholar 

  48. Laubenbacher R, Pareigis B (2003)Decomposition and simulation of sequential dynamical systems.Adv Appl Math 30:655–678

    Article  MathSciNet  MATH  Google Scholar 

  49. Lidl R, Niederreiter H (1997)Finite Fields. Cambridge University Press, Cambridge

    Google Scholar 

  50. Liggett TM (2005)Interacting particle systems. Classics in Mathematics.Springer, Berlin. Reprint of the 1985 original

    Google Scholar 

  51. Lind DA (1984)Applications of ergodic theory and sofic systems to cellular automata.Physica D 10D:36–44

    Article  MathSciNet  Google Scholar 

  52. Lindgren K, Moore C, Nordahl M (1998)Complexity of two-dimensional patterns.J Statistical Phys 91(5–6):909–951

    Article  MathSciNet  MATH  Google Scholar 

  53. Mac Lane S (1998)Category Theory for the Working Mathematician,2nd edn. No 5. in GTM. Springer, New York

    Google Scholar 

  54. Macy MW, Kitts JA, Flache A (2003)Polarization in Dynamic Networks: A Hopfield Model of EmergentStructure. In: Dynamic social network modeling and analysis. TheNational Academies Press, Washington D.C., pp 162–173

    Google Scholar 

  55. Martin O, Odlyzko A, Wolfram S (1984)Algebraic properties of cellular automata.Commun Math Phys 93:219–258

    Article  MathSciNet  MATH  Google Scholar 

  56. Milligan D, Wilson M (1993)The behavior of affine boolean sequential networks.Connect Sci 5(2):153–167

    Article  Google Scholar 

  57. Minar N, Burkhart R, Langton C, Manor A (1996)The swarm simulation system: A toolkit for building multi-agent simulations. Santa Fe Institute preprint series. http://www.santafe.edu/research/publications/wpabstract/199606042 Accessed 11 Aug 2008

  58. Misra J (1986)Distributed discrete-event simulation.ACM Comput Surv 18(1):39–65

    Article  Google Scholar 

  59. Moncion T, Hutzler G, Amar P (2006)Verification of biochemical agent-based models using petri nets. In: Robert T (ed)International Symposium on Agent Based Modeling and Simulation, ABModSim'06, Austrian Society for Cybernetics Studies, pp 695–700;http://www.ibisc.univ-evry.fr/pub/basilic/OUT/Publications/2006/MHA06

  60. Morpurgo D, Serentha R, Seiden P, Celada F (1995)Modelling thymic functions in a cellular automaton.Int Immunol 7:505–516

    Article  Google Scholar 

  61. Mortveit HS, Reidys CM (2001) Discrete, sequential dynamical systems.Discret Math 226:281–295

    Article  MathSciNet  MATH  Google Scholar 

  62. Mortveit HS, Reidys CM (2004)Reduction of discrete dynamical systems over graphs.Adv Complex Syst 7(1):1–20

    Article  MathSciNet  MATH  Google Scholar 

  63. Nagel K, Schreckenberg M (1992)A cellular automaton model for freeway traffic.J Phys I 2:2221–2229

    Article  Google Scholar 

  64. Nagel K, Wagner P (2006)Traffic Flow: Approaches to Modelling and Control.Wiley

    Google Scholar 

  65. Nagel K, Schreckenberg M, Schadschneider A, Ito N (1995)Discrete stochastic models for traffic flow.Phys Rev E 51:2939–2949

    Article  Google Scholar 

  66. Nagel K, Rickert M, Barrett CL (1997)Large-scale traffic simulation.Lecture notes in computer science, vol 1215. Springer, Berlin, pp 380–402

    Book  Google Scholar 

  67. Nance RE (1993)A history of discrete event simulation programming languages.ACM SIGPLAN Notices 28:149–175

    Article  Google Scholar 

  68. North MJ, Collier NT, Vos JR (2006)Experiences creating three implementations of the repast agent modeling toolkit.ACM Trans Modeling Comput Simulation 16:1–25

    Article  Google Scholar 

  69. Orponen P (1994)Computational complexity of neural networks: A survey.Nordic J Comput 1:94–110

    MathSciNet  Google Scholar 

  70. Orponen P (1996)The computational power of discrete hopfield networks with hidden units.Neural Comput 8:403–415

    Article  Google Scholar 

  71. Park JK, Steiglitz K, Thruston WP (1986)Soliton-like behavior in automata.Physica D 19D:423–432

    Article  Google Scholar 

  72. Reidys C (1998)Acyclic Orientations of Random Graphs.Adv Appl Math 21:181–192

    Article  MathSciNet  MATH  Google Scholar 

  73. Reidys CM (2001)On acyclic orientations and sequential dynamical systems.Adv Appl Math 27:790–804

    Article  MathSciNet  MATH  Google Scholar 

  74. Reidys CM (2005)On Certain Morphisms of Sequential Dynamical Systems.Discret Math 296(2–3):245–257

    Article  MathSciNet  MATH  Google Scholar 

  75. Reidys CM (2006)Sequential dynamical systems over words.Ann Combinatorics 10(4):481–498

    Article  MathSciNet  MATH  Google Scholar 

  76. Rickert M, Nagel K, Schreckenberg M, Latour A (1996)Two lane traffic simulations using cellular automata.Physica A 231:534–550

    Article  Google Scholar 

  77. Rothman DH (1988)Cellular-automaton fluids: A model for flow in porous media.Geophysics 53:509–518

    Article  Google Scholar 

  78. Russell S, Norwig P (2003)Artificial Intelligence: A Modern Approach.Prentice-Hall, Upper Saddle River

    Google Scholar 

  79. Schönfisch B, de Roos A (1999)Synchronous and asynchronous updating in cellular automata.BioSystems 51:123–143

    Google Scholar 

  80. Shmulevich I, Dougherty ER, Kim S, Zhang W (2002)Probabilistic boolean networks: A rule-based uncertainty model for gene regulatory networks. Bioinformatics 18(2):261–274

    Article  Google Scholar 

  81. Shmulevich I, Dougherty ER, Zhang W (2002)From boolean to probabilistic boolean networks as models of genetic regulatory networks.Proc IEEE 90(11):1778–1792

    Article  Google Scholar 

  82. Sipser M (1997)Introduction to the Theory of Computation.PWS Publishing Co, Boston

    MATH  Google Scholar 

  83. Vasershtein L (1969)Markov processes over denumerable products of spaces describing large system of automata.Probl Peredachi Informatsii 5(3):64–72

    MathSciNet  Google Scholar 

  84. von Neumann J, Burks AW (ed) (1966)Theory of Self‐Reproducing Automata. University of Illinois Press, Champaign

    Google Scholar 

  85. Whitham G (1999)Linear and Nonlinear Waves, reprint edition edn. Pure and Applied Mathematics: A Wiley‐Interscience Series of Texts, Monographs and Tracts, Wiley-Interscience, New York

    Google Scholar 

  86. Wolfram S (1983)Statistical mechanics of cellular automata.Rev Mod Phys 55:601–644

    Article  MathSciNet  MATH  Google Scholar 

  87. Wolfram S (1986)Theory and Applications of Cellular Automata, Advanced Series on Complex Systems, vol 1.World Scientific Publishing Company, Singapore

    Google Scholar 

  88. Wolfram S (2002)A New Kind of Science.Wolfram Media, Champaign

    MATH  Google Scholar 

Books and Reviews

  1. Hopcroft JE, Motwani R, Ullman JD (2000)Automata Theory, Languages and Computation.Addison Wesley, Reading

    Google Scholar 

  2. Kozen DC (1997)Automata and Computability.Springer, New York

    Book  MATH  Google Scholar 

  3. Wooldridge M (2002)Introduction to Multiagent Systems.Wiley, Chichester

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag

About this entry

Cite this entry

Laubenbacher, R., Jarrah, A.S., Mortveit, H.S., Ravi, S. (2012). Agent Based Modeling, Mathematical Formalism for. In: Meyers, R. (eds) Computational Complexity. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1800-9_6

Download citation

Publish with us

Policies and ethics