Computational Complexity

2012 Edition
| Editors: Robert A. Meyers (Editor-in-Chief)

Agent Based Modeling, Mathematical Formalism for

  • Reinhard Laubenbacher
  • Abdul S. Jarrah
  • Henning S. Mortveit
  • S.S. Ravi
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-1800-9_6

Article Outline

Glossary

Definition of the Subject

Introduction

Existing Mathematical Frameworks

Finite Dynamical Systems

Finite Dynamical Systems as Theoretical and Computational Tools

Mathematical Results on Finite Dynamical Systems

Future Directions

Bibliography

Keywords

Cellular Automaton Multiagent System Turing Machine Dependency Graph Boolean Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

Bibliography

Primary Literature

  1. 1.
    Bagrodia RL (1998)Parallel languages for discrete-event simulation models.IEEE Comput Sci Eng 5(2):27–38CrossRefGoogle Scholar
  2. 2.
    Barrett CL, Reidys CM (1999)Elements of a theory of simulation I: Sequential CA over random graphs.Appl Math Comput 98:241–259MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Barrett CL, Mortveit HS, Reidys CM (2000)Elements of a theory of simulation II: Sequential dynamical systems.Appl Math Comput 107(2–3):121–136MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Barrett CL, Hunt III HB, Marathe MV, Ravi SS, Rosenkrantz DJ, Stearns RE, Tosic P (2001)Garden of eden and fixed point configurations in sequential dynamical systems.In: Proc International Conference on Combinatorics, Computation and Geometry DM-CCG'2001.pp 95–110Google Scholar
  5. 5.
    Barrett CL, Mortveit HS, Reidys CM (2001)Elements of a theory of simulation III: Equivalence of SDS.Appl Math Comput 122:325–340MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Barrett CL, Marathe MV, Smith JP, Ravi SS (2002)A mobility and traffic generation framework for modeling and simulating ad hoc communicationnetworks.In: SAC'02 Madrid, ACM, pp 122–126Google Scholar
  7. 7.
    Barrett CL, Hunt III HB, Marathe MV, Ravi SS, Rosenkrantz DJ, Stearns RE(2003)On some special classes of sequential dynamical systems.Ann Comb 7(4):381–408MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Barrett CL, Hunt III HB, Marathe MV, Ravi SS, Rosenkrantz DJ, Stearns RE (2003) Reachability problems for sequential dynamical systems with threshold functions.Theor Comput Sci 295(1–3):41–64MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Barrett CL, Mortveit HS, Reidys CM (2003)Elements of a theory of computer simulation. IV. sequential dynamical systems: fixed points,invertibility and equivalence.Appl Math Comput 134(1):153–171MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Barrett CL, Hunt III HB, Marathe MV, Ravi SS, Rosenkrantz DJ, Stearns RE (2006)Complexity of reachability problems for finite discrete sequential dynamical systems.J Comput Syst Sci 72:1317–1345MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Barrett CL, Hunt III HB, Marathe MV, Ravi SS, Rosenkrantz DJ, Stearns RE, Thakur M (2007)Computational aspects of analyzing social network dynamics.In: Proc International Joint Conference on Artificial Intelligence IJCAI 2007.pp 2268–2273Google Scholar
  12. 12.
    Barrett CL, Hunt III HB, Marathe MV, Ravi SS, Rosenkrantz DJ, Stearns RE,Thakur M (2007)Predecessor existence problems for finite discrete dynamical systems.Theor Comput Sci 1-2:3–37MathSciNetCrossRefGoogle Scholar
  13. 13.
    Bartlett R, Garzon M (1993)Monomial cellular automata.Complex Syst 7(5):367–388MathSciNetMATHGoogle Scholar
  14. 14.
    Bernaschi M, Castiglione F (2002)Selection of escape mutants from immune recognition during hiv infection.Immunol Cell Biol 80:307–313CrossRefGoogle Scholar
  15. 15.
    Bernaschi M, Succi S, Castiglione F (2000)Large-scale cellular automata simulations of the immune system response.Phys Rev E 61:1851–1854CrossRefGoogle Scholar
  16. 16.
    Booch G, Rumbaugh J, Jacobson I (2005)Unified Modeling Language User Guide, 2nd edn.Addison-Wesley, ReadingGoogle Scholar
  17. 17.
    Brand D, Zafiropulo P (1983)On communicating finite-state machines.J ACM 30:323–342MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Cartier P, Foata D (1969)Problemes combinatoires de commutation et reárrangements.Lecture Notes in Mathematics, vol 85. Springer, BerlinGoogle Scholar
  19. 19.
    Castiglione F, Agur Z (2003)Analyzing hypersensitivity to chemotherapy in a cellular automata model of the immune system. In: Preziosi L (ed)Cancer modeling and simulation. Chapman and Hall/CRC, LondonGoogle Scholar
  20. 20.
    Castiglione F, Bernaschi M, Succi S (1997)Simulating the Immune Response on a Distributed Parallel Computer.Int J Mod Phys C 8:527–545; 10.1142/S0129183197000424CrossRefGoogle Scholar
  21. 21.
    Castiglione F, Duca K, Jarrah A, Laubenbacher R, Hochberg D, Thorley-Lawson D(2007)Simulating Epstein–Barr virus infection with C-ImmSim.Bioinformatics 23(11):1371–1377CrossRefGoogle Scholar
  22. 22.
    Celada F, Seiden P (1992)A computer model of cellular interactions in the immune syste.Immunol Today 13(2):56–62CrossRefGoogle Scholar
  23. 23.
    Celada F, Seiden P (1992) A model for simulating cognate recognition and response in the immune system.J Theor Biol 158:235–270Google Scholar
  24. 24.
    Celada F, Seiden P (1996)Affinity maturation and hypermutation in a simulation of the humoral immune response.Eur J Immunol 26(6):1350–1358CrossRefGoogle Scholar
  25. 25.
    Chaudhuri PP (1997)Additive Cellular Automata. Theory and Applications, vol 1.IEEE Comput Soc PressGoogle Scholar
  26. 26.
    Colón-Reyes O, Laubenbacher R, Pareigis B (2004)Boolean monomial dynamical systems.Ann Comb 8:425–439Google Scholar
  27. 27.
    Colón-Reyes O, Jarrah A, Laubenbacher R, Sturmfels B (2006)Monomial dynamical systems over finite fields.Complex Syst 16(4):333–342Google Scholar
  28. 28.
    Dawson D (1974)Synchronous and asynchronous reversible Markov systems.Canad Math Bull 17(5):633–649MathSciNetCrossRefGoogle Scholar
  29. 29.
    Ebeling W, Schweitzer F (2001)Swarms of particle agents with harmonic interactions.Theor Biosci 120–3/4:207–224Google Scholar
  30. 30.
    Elspas B (1959)The theory of autonomous linear sequential networks.IRE Trans Circuit Theor, pp 45–60Google Scholar
  31. 31.
    Farmer J, Packard N, Perelson A (1986)The immune system, adaptation, and machine learning.Phys D 2(1–3):187–204MathSciNetCrossRefGoogle Scholar
  32. 32.
    Frish U, Hasslacher B, Pomeau Y (1986)Lattice-gas automata for the Navier–Stokes equations.Phys Rev Lett 56:1505–1508CrossRefGoogle Scholar
  33. 33.
    Fukś H (2004)Probabilistic cellular automata with conserved quantities.Nonlinearity 17:159–173Google Scholar
  34. 34.
    Garcia LD, Jarrah AS, Laubenbacher R (2006)Sequential dynamical systems over words.Appl Math Comput 174(1):500–510MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Gardner M (1970)The fantastic combinations of John Conway's new solitaire game “life”.Sci Am 223:120–123CrossRefGoogle Scholar
  36. 36.
    Gouda M, Chang C (1986)Proving liveness for networks of communicating finite-state machines.ACM Trans Program Lang Syst 8:154–182CrossRefMATHGoogle Scholar
  37. 37.
    Guo Y, Gong W, Towsley D (2000)Time-stepped hybrid simulation (tshs) for large scale networks.In: INFOCOM 2000. Nineteenth Annual Joint Conference of theIEEE Computer and Communications Societies.Proc. IEEE, vol 2. pp 441–450Google Scholar
  38. 38.
    Gupta A, Katiyar V (2005)Analyses of shock waves and jams in traffic flow.J Phys A 38:4069–4083MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Hansson AÅ, Mortveit HS, Reidys CM (2005)On asynchronous cellular automata.Adv Complex Syst 8(4):521–538Google Scholar
  40. 40.
    Hedlund G (1969)Endomorphisms and automorphisms of the shift dynamical system.Math Syst Theory 3:320–375MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Hernández-Toledo A (2005)Linear finite dynamical systems.Commun Algebra 33(9):2977–2989Google Scholar
  42. 42.
    Hopfield J (1982)Neural networks and physical systems with emergent collective computational properties.Proc National Academy of Sciences of the USA79:2554–2588 Google Scholar
  43. 43.
    Ilachinsky A (2001)Cellular Automata: A Discrete Universe.World Scientific, SingaporeGoogle Scholar
  44. 44.
    Jarrah A, Laubenbacher R, Stillman M, Vera-Licona P (2007)An efficient algorithm for the phase space structure of linear dynamical systems overfinite fields. (submitted)Google Scholar
  45. 45.
    Jefferson DR (1985)Virtual time.ACM Trans Program Lang Syst 7(3):404–425MathSciNetCrossRefGoogle Scholar
  46. 46.
    Kari J (2005)Theory of cellular automata: A survey.Theor Comput Sci 334:3–33MathSciNetCrossRefMATHGoogle Scholar
  47. 47.
    Keyfitz BL (2004)Hold that light! modeling of traffic flow by differential equations.Stud Math Libr 26:127–153MathSciNetGoogle Scholar
  48. 48.
    Laubenbacher R, Pareigis B (2003)Decomposition and simulation of sequential dynamical systems.Adv Appl Math 30:655–678MathSciNetCrossRefMATHGoogle Scholar
  49. 49.
    Lidl R, Niederreiter H (1997)Finite Fields. Cambridge University Press, CambridgeGoogle Scholar
  50. 50.
    Liggett TM (2005)Interacting particle systems. Classics in Mathematics.Springer, Berlin. Reprint of the 1985 original Google Scholar
  51. 51.
    Lind DA (1984)Applications of ergodic theory and sofic systems to cellular automata.Physica D 10D:36–44MathSciNetCrossRefGoogle Scholar
  52. 52.
    Lindgren K, Moore C, Nordahl M (1998)Complexity of two-dimensional patterns.J Statistical Phys 91(5–6):909–951MathSciNetCrossRefMATHGoogle Scholar
  53. 53.
    Mac Lane S (1998)Category Theory for the Working Mathematician,2nd edn. No 5. in GTM. Springer, New YorkGoogle Scholar
  54. 54.
    Macy MW, Kitts JA, Flache A (2003)Polarization in Dynamic Networks: A Hopfield Model of EmergentStructure. In: Dynamic social network modeling and analysis. TheNational Academies Press, Washington D.C., pp 162–173Google Scholar
  55. 55.
    Martin O, Odlyzko A, Wolfram S (1984)Algebraic properties of cellular automata.Commun Math Phys 93:219–258MathSciNetCrossRefMATHGoogle Scholar
  56. 56.
    Milligan D, Wilson M (1993)The behavior of affine boolean sequential networks.Connect Sci 5(2):153–167CrossRefGoogle Scholar
  57. 57.
    Minar N, Burkhart R, Langton C, Manor A (1996)The swarm simulation system: A toolkit for building multi-agent simulations. Santa Fe Institute preprint series. http://www.santafe.edu/research/publications/wpabstract/199606042 Accessed 11 Aug 2008
  58. 58.
    Misra J (1986)Distributed discrete-event simulation.ACM Comput Surv 18(1):39–65CrossRefGoogle Scholar
  59. 59.
    Moncion T, Hutzler G, Amar P (2006)Verification of biochemical agent-based models using petri nets. In: Robert T (ed)International Symposium on Agent Based Modeling and Simulation, ABModSim'06, Austrian Society for Cybernetics Studies, pp 695–700;http://www.ibisc.univ-evry.fr/pub/basilic/OUT/Publications/2006/MHA06
  60. 60.
    Morpurgo D, Serentha R, Seiden P, Celada F (1995)Modelling thymic functions in a cellular automaton.Int Immunol 7:505–516CrossRefGoogle Scholar
  61. 61.
    Mortveit HS, Reidys CM (2001) Discrete, sequential dynamical systems.Discret Math 226:281–295MathSciNetCrossRefMATHGoogle Scholar
  62. 62.
    Mortveit HS, Reidys CM (2004)Reduction of discrete dynamical systems over graphs.Adv Complex Syst 7(1):1–20MathSciNetCrossRefMATHGoogle Scholar
  63. 63.
    Nagel K, Schreckenberg M (1992)A cellular automaton model for freeway traffic.J Phys I 2:2221–2229CrossRefGoogle Scholar
  64. 64.
    Nagel K, Wagner P (2006)Traffic Flow: Approaches to Modelling and Control.WileyGoogle Scholar
  65. 65.
    Nagel K, Schreckenberg M, Schadschneider A, Ito N (1995)Discrete stochastic models for traffic flow.Phys Rev E 51:2939–2949CrossRefGoogle Scholar
  66. 66.
    Nagel K, Rickert M, Barrett CL (1997)Large-scale traffic simulation.Lecture notes in computer science, vol 1215. Springer, Berlin, pp 380–402CrossRefGoogle Scholar
  67. 67.
    Nance RE (1993)A history of discrete event simulation programming languages.ACM SIGPLAN Notices 28:149–175CrossRefGoogle Scholar
  68. 68.
    North MJ, Collier NT, Vos JR (2006)Experiences creating three implementations of the repast agent modeling toolkit.ACM Trans Modeling Comput Simulation 16:1–25CrossRefGoogle Scholar
  69. 69.
    Orponen P (1994)Computational complexity of neural networks: A survey.Nordic J Comput 1:94–110MathSciNetGoogle Scholar
  70. 70.
    Orponen P (1996)The computational power of discrete hopfield networks with hidden units.Neural Comput 8:403–415CrossRefGoogle Scholar
  71. 71.
    Park JK, Steiglitz K, Thruston WP (1986)Soliton-like behavior in automata.Physica D 19D:423–432CrossRefGoogle Scholar
  72. 72.
    Reidys C (1998)Acyclic Orientations of Random Graphs.Adv Appl Math 21:181–192MathSciNetCrossRefMATHGoogle Scholar
  73. 73.
    Reidys CM (2001)On acyclic orientations and sequential dynamical systems.Adv Appl Math 27:790–804MathSciNetCrossRefMATHGoogle Scholar
  74. 74.
    Reidys CM (2005)On Certain Morphisms of Sequential Dynamical Systems.Discret Math 296(2–3):245–257MathSciNetCrossRefMATHGoogle Scholar
  75. 75.
    Reidys CM (2006)Sequential dynamical systems over words.Ann Combinatorics 10(4):481–498MathSciNetCrossRefMATHGoogle Scholar
  76. 76.
    Rickert M, Nagel K, Schreckenberg M, Latour A (1996)Two lane traffic simulations using cellular automata.Physica A 231:534–550CrossRefGoogle Scholar
  77. 77.
    Rothman DH (1988)Cellular-automaton fluids: A model for flow in porous media.Geophysics 53:509–518CrossRefGoogle Scholar
  78. 78.
    Russell S, Norwig P (2003)Artificial Intelligence: A Modern Approach.Prentice-Hall, Upper Saddle RiverGoogle Scholar
  79. 79.
    Schönfisch B, de Roos A (1999)Synchronous and asynchronous updating in cellular automata.BioSystems 51:123–143Google Scholar
  80. 80.
    Shmulevich I, Dougherty ER, Kim S, Zhang W (2002)Probabilistic boolean networks: A rule-based uncertainty model for gene regulatory networks. Bioinformatics 18(2):261–274CrossRefGoogle Scholar
  81. 81.
    Shmulevich I, Dougherty ER, Zhang W (2002)From boolean to probabilistic boolean networks as models of genetic regulatory networks.Proc IEEE 90(11):1778–1792CrossRefGoogle Scholar
  82. 82.
    Sipser M (1997)Introduction to the Theory of Computation.PWS Publishing Co, Boston MATHGoogle Scholar
  83. 83.
    Vasershtein L (1969)Markov processes over denumerable products of spaces describing large system of automata.Probl Peredachi Informatsii 5(3):64–72MathSciNetGoogle Scholar
  84. 84.
    von Neumann J, Burks AW (ed) (1966)Theory of Self‐Reproducing Automata. University of Illinois Press, ChampaignGoogle Scholar
  85. 85.
    Whitham G (1999)Linear and Nonlinear Waves, reprint edition edn. Pure and Applied Mathematics: A Wiley‐Interscience Series of Texts, Monographs and Tracts, Wiley-Interscience, New YorkGoogle Scholar
  86. 86.
    Wolfram S (1983)Statistical mechanics of cellular automata.Rev Mod Phys 55:601–644MathSciNetCrossRefMATHGoogle Scholar
  87. 87.
    Wolfram S (1986)Theory and Applications of Cellular Automata, Advanced Series on Complex Systems, vol 1.World Scientific Publishing Company, SingaporeGoogle Scholar
  88. 88.
    Wolfram S (2002)A New Kind of Science.Wolfram Media, ChampaignMATHGoogle Scholar

Books and Reviews

  1. 89.
    Hopcroft JE, Motwani R, Ullman JD (2000)Automata Theory, Languages and Computation.Addison Wesley, ReadingGoogle Scholar
  2. 90.
    Kozen DC (1997)Automata and Computability.Springer, New YorkCrossRefMATHGoogle Scholar
  3. 91.
    Wooldridge M (2002)Introduction to Multiagent Systems.Wiley, ChichesterGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Reinhard Laubenbacher
    • 1
  • Abdul S. Jarrah
    • 1
  • Henning S. Mortveit
    • 1
  • S.S. Ravi
    • 2
  1. 1.Virginia Bioinformatics InstituteVirginia Polytechnic Institute and State UniversityVirginiaUSA
  2. 2.Department of Computer ScienceUniversity at Albany – State University of New YorkNew YorkUSA