Skip to main content

Dynamic Games with an Application to Climate Change Models

  • Reference work entry
Computational Complexity
  • 240 Accesses

Article Outline

Glossary

Definition of the Subject

Introduction

The Dynamic – or Stochastic – Game Model

The Dynamic – or Stochastic – Game: Results

Global Climate Change – Issues, Models

Global Climate Change – Results

Future Directions

Bibliography

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,500.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Players :

The agents who take actions. These actions can be – depending on application – the choice of capital stock, greenhouse emissions, level of savings, level of Research & Development expenditures, price level, quality and quantity of effort, etc.

Strategies :

Full contingent plans for the actions that players take. Each strategy incorporates a choice of action not just once but rather a choice of action for every possible decision node for the player concerned.

Payoffs :

The utility or returns to a player from playing a game. These payoffs typically depend on the strategies chosen – and the consequent actions taken – by the player herself as well as those chosen by the other players in the game.

Game horizon :

The length of time over which the game is played, i. e., over which the players take actions. The horizon may be finite – if there are only a finite number of opportunities for decision‐making – or infinite – when there are an infinite number of decision‐making opportunities.

Equilibrium :

A vector of strategies, one for each player in the game, such that no player can unilaterally improve her payoffs by altering her strategy, if the others' strategies are kept fixed.

Climate change :

The consequence to the earth's atmosphere of economic activities such as the production and consumption of energy that result in a build-up of greenhouse gases such as carbon dioxide.

Bibliography

  1. Abreu D (1988) On the theory of infinitely repeated games withdiscounting. Econometrica 56:383–396

    Article  MathSciNet  MATH  Google Scholar 

  2. Abreu D, Pearce D, Stachetti E (1990) Towards a general theory ofdiscounted repeated games with discounting. Econometrica 58:1041–1065

    Article  MathSciNet  MATH  Google Scholar 

  3. Benhabib J, Radner R (1992) The joint exploitation of a productive asset:A game‐theoretic approach. Econ Theory 2:155–190

    Article  MathSciNet  MATH  Google Scholar 

  4. Benoit J-P, Krishna V (1987) Finitely repeated games. Econometrica53:905–922

    Article  MathSciNet  Google Scholar 

  5. Dockner E, Long N, Sorger G (1996) Analysis of Nash equilibria in a classof capital accumulation games. J Econ Dyn Control 20:1209–1235

    Article  MathSciNet  MATH  Google Scholar 

  6. Dockner E, Nishimura K (1999) Transboundary boundary problems in a dynamicgame model. Jpn Econ Rev 50:443–456

    Article  Google Scholar 

  7. Duffie D, Geanakoplos J, Mas-Colell A, Mclennan A (1994) Stationary Markovequilibria. Econometrica 62-4:745–781

    Article  MathSciNet  Google Scholar 

  8. Dutta P (1991) What do discounted optima converge to? A theory of discountrate asymptotics in economic models. J Econ Theory 55:64–94

    Article  MATH  Google Scholar 

  9. Dutta P (1995) A folk theorem for stochastic games. JET66:1–32

    MATH  Google Scholar 

  10. Dutta P, Radner R (2004) Self‐enforcing climate change treaties. ProcNat Acad Sci USA 101-14:5174–5179

    Article  Google Scholar 

  11. Dutta P, Radner R (2006) Population growth and technological change ina global warming model. Econ Theory 29:251–270

    Article  MathSciNet  MATH  Google Scholar 

  12. Dutta P, Radner R (2008) A strategic model of global warming model:Theory and some numbers. J Econ Behav Organ (forthcoming)

    Google Scholar 

  13. Dutta P, Radner R (2008) Choosing cleaner technologies: Global warming andtechnological change (in preparation)

    Google Scholar 

  14. Dutta P, Sundaram R (1993) How different can strategic models be? J EconTheory 60:42–61

    Article  MathSciNet  MATH  Google Scholar 

  15. Fudenberg D, Maskin E (1986) The Folk theorem in repeated games withdiscounting or incomplete information. Econometrica 54:533–554

    Article  MathSciNet  MATH  Google Scholar 

  16. Harris C, Reny P, Robson A (1995) The existence of subgame perfect equilibriumin continuous games with almost perfect information: A case for extensive‐form correlation. Econometrica63:507–544

    Article  MathSciNet  MATH  Google Scholar 

  17. Inter-Governmental Panel on Climate Change (2007) Climate Change, theSynthesis Report. IPCC, Geneva

    Google Scholar 

  18. Levhari D, Mirman L (1980) The great fish war: An example using a dynamiccournot‐Nash solution. Bell J Econ 11:322–334

    Article  MathSciNet  Google Scholar 

  19. Long N, Sorger G (2006) Insecure property rights and growth: The role ofappropriation costs, wealth effects and heterogenity. Econ Theory 28:513–529

    Article  MathSciNet  MATH  Google Scholar 

  20. Mertens J-F, Parthasarathy T (1987) Equilibria for Discounted StochasticGames. Research Paper 8750, CORE. University Catholique de Louvain

    Google Scholar 

  21. Mertens, Neyman (1983)

    Google Scholar 

  22. Nowak A (1985) Existence of equilibrium stationary strategies in discountednoncooperative stochastic games with uncountable state space. J Optim Theory Appl 45:591–603

    Article  MathSciNet  MATH  Google Scholar 

  23. Parthasarathy T (1973) Discounted, positive and non‐cooperativestochastic games. Int J Game Theory 2–1:

    Google Scholar 

  24. Rieder U (1979) Equilibrium plans for non-zero sum Markov games. In: MoeschlinO, Pallasche D (ed) Game theory and related topics. North-Holland, Amsterdam

    Google Scholar 

  25. Rustichini A (1992) Second‐best equilibria for games of jointexploitation of a productive asset. Econ Theory 2:191–196

    Article  MathSciNet  MATH  Google Scholar 

  26. Shapley L (1953) Stochastic Games. In: Proceedings of National Academy ofSciences, Jan 1953

    Google Scholar 

  27. Sobel M (1990) Myopic solutions of affine dynamic models. Oper Res38:847–53

    Article  MATH  Google Scholar 

  28. Sorger G (1998) Markov‐perfect Nash equilibria in a class ofresource games. Econ Theory 11:79–100

    Article  MathSciNet  MATH  Google Scholar 

  29. Stern N (2006) Review on the economics of climate change. HM Treasury,London. www.sternreview.org.uk

  30. Stern Review on the Economics of Climate Change, October,(2006)

    Google Scholar 

  31. Sundaram R (1989) Perfect equilibrium in a class of symmetric dynamicgames. J Econ Theory 47:153–177

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag

About this entry

Cite this entry

Dutta, P.K. (2012). Dynamic Games with an Application to Climate Change Models. In: Meyers, R. (eds) Computational Complexity. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1800-9_58

Download citation

Publish with us

Policies and ethics