Skip to main content

Correlations in Complex Systems

  • Reference work entry
Book cover Computational Complexity

Article Outline

Glossary

Definition of the Subject

Introduction

Correlation and Memory in Discrete Non-Markov Stochastic Processes

Correlation and Memory in Discrete Non‐Markov Stochastic Processes Generated by Random Events

Information Measures of Memory in Complex Systems

Manifestation of Strong Memory in Complex Systems

Some Perspectives on the Studies of Memory in Complex Systems

Bibliography

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,500.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Correlation :

A correlation describes the degree of relationship between two or more variables. The correlations are viewed due to the impact of random factors and can be characterized by the methods of probability theory.

Correlation function :

The correlation function (abbreviated, as CF) represents the quantitative measure for the compact description of the wide classes of correlation in the complex systems (CS). The correlation function of two variables in statistical mechanics provides a measure of the mutual order existing between them. It quantifies the way random variables at different positions are correlated. For example in a spin system, it is the thermal average of the scalar product of the spins at two lattice points over all possible orderings.

Memory effects in stochastic processes through correlations:

Memory effects (abbreviated, as ME) appear at a more detailed level of statistical description of correlation in the hierarchical manner. ME reflect the complicated or hidden character of creation, the propagation and the decay of correlation. ME are produced by inherent interactions and statistical after‐effects in CS. For the statistical systems ME are induced by contracted description of the evolution of the dynamic variables of a CS.

Memory functions :

Memory functions describe mutual interrelations between the rates of change of random variables on different levels of the statistical description. The role of memory has its roots in the natural sciences since 1906 when the famous Russian mathematician Markov wrote his first paper in the theory of Markov Random Processes. The theory is based on the notion of the instant loss of memory from the prehistory (memoryless property) of random processes.

Information measures of statistical memory in complexsystems:

From the physical point of view time scales of correlation and memory cannot be treated as arbitrary. Therefore, one can introduce some statistical quantifiers for the quantitative comparison of these time scales. They are dimensionless and possess the statistical spectra on the different levels of the statistical description.

Bibliography

Primary Literature

  1. Markov AA (1906) Two‐dimensional Brownian motion and harmonic functions. Proc Phys Math Soc Kazan Imp Univ 15(4):135–178; in Russian

    Google Scholar 

  2. Chapman S, Couling TG (1958) The mathematical theory of nonuniform gases. Cambridge University Press, Cambridge

    Google Scholar 

  3. Albeverio S, Blanchard P, Steil L (1990) Stochastic processes and their applications in mathematics and physics. Kluwer, Dordrecht

    Book  MATH  Google Scholar 

  4. Rice SA, Gray P (1965) The statistical mechanics of simple liquids. Interscience, New York

    Google Scholar 

  5. Kubo R, Toda M, Hashitsume N, Saito N (2003) Statistical physics II: Nonequilibrium statistical mechanics. In: Fulde P (ed) Springer Series in Solid-State Sciences, vol 31. Springer, Berlin, p 279

    Google Scholar 

  6. Ginzburg VL, Andryushin E (2004) Superconductivity. World Scientific, Singapore

    Book  MATH  Google Scholar 

  7. Sachs I, Sen S, Sexton J (2006) Elements of statistical mechanics. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  8. Fetter AL, Walecka JD (1971) Quantum theory of many‐particle physics. Mc Graw-Hill, New York

    Google Scholar 

  9. Chandler D (1987) Introduction to modern statistical mechanics. Oxford University Press, Oxford

    Google Scholar 

  10. Zwanzig R (2001) Nonequilibrium statistical mechanics. Cambridge University Press, Cambridge

    Google Scholar 

  11. Zwanzig R (1961) Memory effects in irreversible thermodynamics. Phys Rev 124:983–992

    Article  MATH  Google Scholar 

  12. Mori H (1965) Transport, collective motion and Brownian motion. Prog Theor Phys 33:423–455; Mori H (1965) A continued fraction representation of the time correlation functions. Prog Theor Phys 34:399–416

    Article  Google Scholar 

  13. Grabert H, Hänggi P, Talkner P (1980) Microdynamics and nonlinear stochastic processes of gross variables. J Stat Phys 22:537–552

    Google Scholar 

  14. Grabert H, Talkner P, Hänggi P (1977) Microdynamics and time‐evolution of macroscopic non‐Markovian systems. Z Physik B 26:389–395

    Google Scholar 

  15. Grabert H, Talkner P, Hänggi P, Thomas H (1978) Microdynamics and time‐evolution of macroscopic non‐Markovian systems II. Z Physik B 29:273–280

    Google Scholar 

  16. Hänggi P, Thomas H (1977) Time evolution, correlations and linear response of non‐Markov processes. Z Physik B 26:85–92

    Google Scholar 

  17. Hänggi P, Talkner P (1983) Memory index of first‐passage time: A simple measure of non‐Markovian character. Phys Rev Lett 51:2242–2245

    Google Scholar 

  18. Hänggi P, Thomas H (1982) Stochastic processes: Time‐evolution, symmetries and linear response. Phys Rep 88:207–319

    Google Scholar 

  19. Lee MH (1982) Orthogonalization process by recurrence relations. Phys Rev Lett 49:1072–1072; Lee MH (1983) Can the velocity autocorrelation function decay exponentially? Phys Rev Lett 51:1227–1230

    Article  Google Scholar 

  20. Balucani U, Lee MH, Tognetti V (2003) Dynamic correlations. Phys Rep 373:409–492

    Article  MathSciNet  MATH  Google Scholar 

  21. Hong J, Lee MH (1985) Exact dynamically convergent calculations of the frequency‐dependent density response function. Phys Rev Lett 55:2375–2378

    Article  Google Scholar 

  22. Lee MH (2000) Heisenberg, Langevin, and current equations via the recurrence relations approach. Phys Rev E 61:3571–3578; Lee MH (2000) Generalized Langevin equation and recurrence relations. Phys Rev E 62:1769–1772

    Article  Google Scholar 

  23. Lee MH (2001) Ergodic theory, infinite products, and long time behavior in Hermitian models. Phys Rev Lett 87(1–4):250601

    Article  Google Scholar 

  24. Kubo R (1966) Fluctuation‐dissipation theorem. Rep Progr Phys 29:255–284

    Article  Google Scholar 

  25. Kawasaki K (1970) Kinetic equations and time correlation functions of critical fluctuations. Ann Phys 61:1–56

    Article  Google Scholar 

  26. Michaels IA, Oppenheim I (1975) Long-time tails and Brownian motion. Physica A 81:221–240

    Article  Google Scholar 

  27. Frank TD, Daffertshofer A, Peper CE, Beek PJ, Haken H (2001) H‑theorem for a mean field model describing coupled oscillator systems under external forces. Physica D 150:219–236

    Article  MATH  Google Scholar 

  28. Vogt M, Hernandez R (2005) An idealized model for nonequilibrium dynamics in molecular systems. J Chem Phys 123(1–8):144109

    Article  Google Scholar 

  29. Sen S (2006) Solving the Liouville equation for conservative systems: Continued fraction formalism and a simple application. Physica A 360:304–324

    Article  MathSciNet  Google Scholar 

  30. Prokhorov YV (1999) Probability and mathematical statistics (encyclopedia). Scien Publ Bolshaya Rossiyskaya Encyclopedia, Moscow

    Google Scholar 

  31. Yulmetyev R et al (2000) Stochastic dynamics of time correlation in complex systems with discrete time. Phys Rev E 62:6178–6194

    Article  Google Scholar 

  32. Yulmetyev R et al (2002) Quantification of heart rate variability by discrete nonstationarity non‐Markov stochastic processes. Phys Rev E 65(1–15):046107

    Article  Google Scholar 

  33. Reed M, Samon B (1972) Methods of mathematical physics. Academic, New York

    MATH  Google Scholar 

  34. Graber H (1982) Projection operator technique in nonequilibrium statistical mechanics. In: Höhler G (ed) Springer tracts in modern physics, vol 95. Springer, Berlin

    Google Scholar 

  35. Yulmetyev RM (2001) Possibility between earthquake and explosion seismogram differentiation by discrete stochastic non‐Markov processes and local Hurst exponent analysis. Phys Rev E 64(1–14):066132

    Article  Google Scholar 

  36. Abe S, Suzuki N (2004) Aging and scaling of earthquake aftershocks. Physica A 332:533–538

    Article  Google Scholar 

  37. Tirnakli U, Abe S (2004) Aging in coherent noise models and natural time. Phys Rev E 70(1–4):056120

    Article  Google Scholar 

  38. Abe S, Sarlis NV, Skordas ES, Tanaka HK, Varotsos PA (2005) Origin of the usefulness of the natural‐time representation of complex time series. Phys Rev Lett 94(1–4):170601

    Article  Google Scholar 

  39. Stanley HE, Meakin P (1988) Multifractal phenomena in physics and chemistry. Nature 335:405–409

    Article  Google Scholar 

  40. Ivanov P Ch, Amaral LAN, Goldberger AL, Havlin S, Rosenblum MG, Struzik Z, Stanley HE (1999) Multifractality in human heartbeat dynamics. Nature 399:461–465

    Article  Google Scholar 

  41. Mokshin AV, Yulmetyev R, Hänggi P (2005) Simple measure of memory for dynamical processes described by a generalized Langevin equation. Phys Rev Lett 95(1–4):200601

    Google Scholar 

  42. Allegrini P et al (2003) Compression and diffusion: A joint approach to detect complexity. Chaos Soliton Fractal 15:517–535

    Article  MathSciNet  MATH  Google Scholar 

  43. Amaral LAN et al (2001) Application of statistical physics methods and concepts to the study of science and technology systems. Scientometrics 51:9–36

    Article  Google Scholar 

  44. Arneodo A et al (1996) Wavelet based fractal analysis of DNA sequences. Physica D 96:291–320

    Article  Google Scholar 

  45. Ashkenazy Y et al (2003) Magnitude and sign scaling in power-law correlated time series. Physica A Stat Mech Appl 323:19–41

    Article  MATH  Google Scholar 

  46. Ashkenazy Y et al (2003) Nonlinearity and multifractality of climate change in the past 420,000 years. Geophys Res Lett 30:2146

    Article  Google Scholar 

  47. Azbel MY (1995) Universality in a DNA statistical structure. Phys Rev Lett 75:168–171

    Article  Google Scholar 

  48. Baldassarri A et al (2006) Brownian forces in sheared granular matter. Phys Rev Lett 96:118002

    Article  Google Scholar 

  49. Baleanu D et al (2006) Fractional Hamiltonian analysis of higher order derivatives systems. J Math Phys 47:103503

    Article  MathSciNet  Google Scholar 

  50. Blesic S et al (2003) Detecting long-range correlations in time series of neuronal discharges. Physica A 330:391–399

    Article  MathSciNet  MATH  Google Scholar 

  51. Cajueiro DO, Tabak BM (2004) The Hurst exponent over time: Testing the assertion that emerging markets are becoming more efficient. Physica A 336:521–537

    Article  MathSciNet  Google Scholar 

  52. Brecht M et al (1998) Correlation analysis of corticotectal interactions in the cat visual system. J Neurophysiol 79:2394–2407

    Google Scholar 

  53. Brouersa F, Sotolongo‐Costab O (2006) Generalized fractal kinetics in complex systems (application to biophysics and biotechnology). Physica A 368(1):165–175

    Google Scholar 

  54. Coleman P, Pietronero L (1992) The fractal structure of the universe. Phys Rep 213:311–389

    Article  Google Scholar 

  55. Goldberger AL et al (2002) What is physiologic complexity and how does it change with aging and disease? Neurobiol Aging 23:23–26

    Article  Google Scholar 

  56. Grau‐Carles P (2000) Empirical evidence of long-range correlations in stock returns. Physica A 287:396–404

    Google Scholar 

  57. Grigolini P et al (2001) Asymmetric anomalous diffusion: An efficient way to detect memory in time series. Fractal‐Complex Geom Pattern Scaling Nat Soc 9:439–449

    Google Scholar 

  58. Ebeling W, Frommel C (1998) Entropy and predictability of information carriers. Biosystems 46:47–55

    Article  Google Scholar 

  59. Fukuda K et al (2004) Heuristic segmentation of a nonstationary time series. Phys Rev E 69:021108

    Article  Google Scholar 

  60. Hausdorff JM, Peng CK (1996) Multiscaled randomness: A possible source of 1/f noise in biology. Phys Rev E 54:2154–2157

    Article  Google Scholar 

  61. Herzel H et al (1998) Interpreting correlations in biosequences. Physica A 249:449–459

    Article  MathSciNet  Google Scholar 

  62. Hoop B, Peng CK (2000) Fluctuations and fractal noise in biological membranes. J Membrane Biol 177:177–185

    Article  Google Scholar 

  63. Hoop B et al (1998) Temporal correlation in phrenic neural activity. In: Hughson RL, Cunningham DA, Duffin J (eds) Advances in modelling and control of ventilation. Plenum Press, New York, pp 111–118

    Google Scholar 

  64. Ivanova K, Ausloos M (1999) Application of the detrended fluctuation analysis (DFA) method for describing cloud breaking. Physica A 274:349–354

    Article  Google Scholar 

  65. Ignaccolo M et al (2004) Scaling in non‐stationary time series. Physica A 336:595–637

    Article  Google Scholar 

  66. Imponente G (2004) Complex dynamics of the biological rhythms: Gallbladder and heart cases. Physica A 338:277–281

    Article  MathSciNet  Google Scholar 

  67. Jefferiesa P et al (2003) Anatomy of extreme events in a complex adaptive system. Physica A 318:592–600

    Article  Google Scholar 

  68. Karasik R et al (2002) Correlation differences in heartbeat fluctuations during rest and exercise. Phys Rev E 66:062902

    Article  Google Scholar 

  69. Kulessa B et al (2003) Long-time autocorrelation function of ECG signal for healthy versus diseased human heart. Acta Phys Pol B 34:3–15

    Google Scholar 

  70. Kutner R, Switala F (2003) Possible origin of the non‐linear long-term autocorrelations within the Gaussian regime. Physica A 330:177–188

    Article  MathSciNet  MATH  Google Scholar 

  71. Koscielny‐Bunde E et al (1998) Indication of a universal persistence law governing atmospheric variability. Phys Rev Lett 81:729–732

    Google Scholar 

  72. Labini F (1998) Scale invariance of galaxy clustering. Phys Rep 293:61–226

    Article  Google Scholar 

  73. Linkenkaer‐Hansen K et al (2001) Long-range temporal correlations and scaling behavior in human brain oscillations. J Neurosci 21:1370–1377

    Google Scholar 

  74. Mercik S et al (2000) What can be learnt from the analysis of short time series of ion channel recordings. Physica A 276:376–390

    Article  Google Scholar 

  75. Montanari A et al (1999) Estimating long-range dependence in the presence of periodicity: An empirical study. Math Comp Model 29:217–228

    Article  MathSciNet  MATH  Google Scholar 

  76. Mark N (2004) Time fractional Schrodinger equation. J Math Phys 45:3339–3352

    Article  MathSciNet  MATH  Google Scholar 

  77. Niemann M et al (2008) Usage of the Mori–Zwanzig method in time series analysis. Phys Rev E 77:011117

    Article  MathSciNet  Google Scholar 

  78. Nigmatullin RR (2002) The quantified histograms: Detection of the hidden unsteadiness. Physica A 309:214–230

    Article  MATH  Google Scholar 

  79. Nigmatullin RR (2006) Fractional kinetic equations and universal decoupling of a memory function in mesoscale region. Physica A 363:282–298

    Article  Google Scholar 

  80. Ogurtsov MG (2004) New evidence for long-term persistence in the sun’s activity. Solar Phys 220:93–105

    Article  Google Scholar 

  81. Pavlov AN, Dumsky DV (2003) Return times dynamics: Role of the Poincare section in numerical analysis. Chaos Soliton Fractal 18:795–801

    Article  MATH  Google Scholar 

  82. Paulus MP (1997) Long-range interactions in sequences of human behavior. Phys Rev E 55:3249–3256

    Article  Google Scholar 

  83. Peng C-K et al (1994) Mosaic organization of DNA nucleotides. Phys Rev E 49:1685–1689

    Article  Google Scholar 

  84. Peng C-K et al (1995) Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 5:82–87

    Article  Google Scholar 

  85. Poon CS, Merrill CK (1997) Decrease of cardiac chaos in congestive heart failure. Nature 389:492–495

    Article  Google Scholar 

  86. Rangarajan G, Ding MZ (2000) Integrated approach to the assessment of long range correlation in time series data. Phys Rev E 61:4991–5001

    Article  MathSciNet  Google Scholar 

  87. Robinson PA (2003) Interpretation of scaling properties of electroencephalographic fluctuations via spectral analysis and underlying physiology. Phys Rev E 67:032902

    Article  Google Scholar 

  88. Rizzo F et al (2005) Transport properties in correlated systems: An analytical model. Phys Rev B 72:155113

    Article  Google Scholar 

  89. Shen Y et al (2003) Dimensional complexity and spectral properties of the human sleep EEG. Clinic Neurophysiol 114:199–209

    Article  Google Scholar 

  90. Schmitt D et al (2006) Analyzing memory effects of complex systems from time series. Phys Rev E 73:056204

    Article  Google Scholar 

  91. Soen Y, Braun F (2000) Scale‐invariant fluctuations at different levels of organization in developing heart cell networks. Phys Rev E 61:R2216–R2219

    Article  Google Scholar 

  92. Stanley HE et al (1994) Statistical‐mechanics in biology – how ubiquitous are long-range correlations. Physica A 205:214–253

    Article  Google Scholar 

  93. Stanley HE (2000) Exotic statistical physics: Applications to biology, medicine, and economics. Physica A 285:1–17

    Article  MATH  Google Scholar 

  94. Tarasov VE (2006) Fractional variations for dynamical systems: Hamilton and Lagrange approaches. J Phys A Math Gen 39:8409–8425

    Article  MathSciNet  MATH  Google Scholar 

  95. Telesca L et al (2003) Investigating the time‐clustering properties in seismicity of Umbria‐Marche region (central Italy). Chaos Soliton Fractal 18:203–217

    Article  MATH  Google Scholar 

  96. Turcott RG, Teich MC (1996) Fractal character of the electrocardiogram: Distinguishing heart‐failure and normal patients. Ann Biomed Engin 24:269–293

    Article  Google Scholar 

  97. Thurner S et al (1998) Receiver‐operating‐characteristic analysis reveals superiority of scale‐dependent wavelet and spectral measures for assessing cardiac dysfunction. Phys Rev Lett 81:5688–5691

    Article  Google Scholar 

  98. Vandewalle N et al (1999) The moving averages demystified. Physica A 269:170–176

    Article  Google Scholar 

  99. Varela M et al (2003) Complexity analysis of the temperature curve: New information from body temperature. Eur J Appl Physiol 89:230–237

    Article  Google Scholar 

  100. Varotsos PA et al (2002) Long-range correlations in the electric signals that precede rupture. Phys Rev E 66:011902

    Article  Google Scholar 

  101. Watters PA (2000) Time‐invariant long-range correlations in electroencephalogram dynamics. Int J Syst Sci 31:819–825

    Article  MATH  Google Scholar 

  102. Wilson PS et al (2003) Long‐memory analysis of time series with missing values. Phys Rev E 68:017103

    Article  Google Scholar 

  103. Yulmetyev RM et al (2004) Dynamical Shannon entropy and information Tsallis entropy in complex systems. Physica A 341:649–676

    Article  MathSciNet  Google Scholar 

  104. Yulmetyev R, Hänggi P, Gafarov F (2000) Stochastic dynamics of time correlation in complex systems with discrete time. Phys Rev E 62:6178

    Google Scholar 

  105. Yulmetyev R, Gafarov F, Hänggi P, Nigmatullin R, Kayumov S (2001) Possibility between earthquake and explosion seismogram processes and local Hurst exponent analysis. Phys Rev E 64:066132

    Google Scholar 

  106. Yulmetyev R, Hänggi P, Gafarov F (2002) Quantification of heart rate variability by discrete nonstationary non‐Markov stochastic processes. Phys Rev E 65:046107

    Google Scholar 

  107. Yulmetyev R, Demin SA, Panischev OY, Hänggi P, Timashev SF, Vstovsky GV (2006) Regular and stochastic behavior of Parkinsonian pathological tremor signals. Physica A 369:655

    Google Scholar 

Books and Reviews

  1. Badii R, Politi A (1999) Complexity: Hierarchical structures and scaling in physics. Oxford University Press, New York

    MATH  Google Scholar 

  2. Elze H-T (ed) (2004) Decoherence and entropy in complex systems. In: Selected lectures from DICE 2002 series: Lecture notes in physics, vol 633. Springer, Heidelberg

    Google Scholar 

  3. Kantz H, Schreiber T (2004) Nonlinear time series analysis. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  4. Mallamace F, Stanley HE (2004) The physics of complex systems (new advances and perspectives). IOS Press, Amsterdam

    MATH  Google Scholar 

  5. Parisi G, Pietronero L, Virasoro M (1992) Physics of complex systems: Fractals, spin glasses and neural networks. Physica A 185(1–4):1–482

    Google Scholar 

  6. Sprott JC (2003) Chaos and time‐series analysis. Oxford University Press, New York

    MATH  Google Scholar 

  7. Zwanzig R (2001) Nonequilibrium statistical physics. Oxford University Press, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag

About this entry

Cite this entry

Yulmetyev, R.M., Hänggi, P. (2012). Correlations in Complex Systems. In: Meyers, R. (eds) Computational Complexity. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1800-9_46

Download citation

Publish with us

Policies and ethics