Computational Complexity

2012 Edition
| Editors: Robert A. Meyers (Editor-in-Chief)

Thermodynamics of Computation

  • H. John Caulfield
  • Lei Qian
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-1800-9_197

Article Outline

Glossary

Definition of the Subject

Introduction

Thermodynamics

Computer Equivalents of the First and Second Laws

The Thermodynamics of Digital Computers

Analog and Digital Computers

Natural Computing

Quantum Computing

Optical Computing

Thermodynamically Inspired Computing

Cellular Array Processors

Conclusions

Future Directions

Bibliography

Keywords

Quantum Computer Logic Gate Digital Computer Nonequilibrium Thermodynamic Traditional Computer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

Bibliography

PrimaryLiterature

  1. 1.
    Weaver W (1948) Science and complexity.Am Sci 36:536–541Google Scholar
  2. 2.
    Nicolis G, Prigogine I (1977) Self-organization in nonequilibrium systems. Wiley, New YorkMATHGoogle Scholar
  3. 3.
    Prigogine I, Stengers I (1984) Order out of chaos.Bantam Books, New YorkGoogle Scholar
  4. 4.
    Prigogine I, Stengers I, Toffler A (1986) Order out of chaos: Man's new dialogue with nature. Flamingo, LondonGoogle Scholar
  5. 5.
    Nyce JM (1996) Guest editor's introduction.IEEE Ann Hist Comput 18:3–4CrossRefGoogle Scholar
  6. 6.
    Orponen P (1997) A survey of continous-time computation theory. In: Du DZ, Ko KI (eds) Advances in Algorithms, Languages, and Complexity.Kluwer, Dordrecht, pp 209–224CrossRefGoogle Scholar
  7. 7.
    Pour-El MB, Richards JI (1989) Computability in Analysis and Physics. Springer, BerlinMATHGoogle Scholar
  8. 8.
    Grantham W, Amitm A (1990) Discretization chaos – Feedback control and transition to chaos.In: Control and dynamic systems, vol 34.Advances in control mechanics. Pt. 1 (A91–50601 21–63). Academic Press, San Diego, pp 205–277Google Scholar
  9. 9.
    Herbst BM, Ablowitz MJ (1989) Numerically induced chaos in the nonlinear Schrödinger equation.Phys Rev Lett 62:2065–2068MathSciNetCrossRefGoogle Scholar
  10. 10.
    Ogorzalek MJ (1997) Chaos and complexity in nonlinear electronic circuits. World Sci Ser Nonlinear Sci Ser A 22Google Scholar
  11. 11.
    Nielsen MA, Chuang IL (2000) Quantum Computation and Quantum Information. Cambridge University Press, New YorkMATHGoogle Scholar
  12. 12.
    Bouwmeester D, Ekert A, Zeilinger A (2001) The Physics of Quantum Information. Springer, BerlinGoogle Scholar
  13. 13.
    Caulfield HJ, Qian L (2006) The other kind of quantum computing.Int J Unconv Comput 2(3)281–290Google Scholar
  14. 14.
    HJ Caulfield, Vikram CS, Zavalin A (2006) Optical logic redux.Opt Int J Light Electron Opt 117:199–209CrossRefGoogle Scholar
  15. 15.
    Caulfield HJ, Kukhtarev N, Kukhtareva T, Schamschula MP, Banarjee P (1999) One, two, and three-beam optical chaos and self organization effects in photorefractive materials.Mat Res Innov 3:194–199CrossRefGoogle Scholar
  16. 16.
    Caulfield HJ, Brasher JD, Hester CF (1991) Complexity issues in optical computing.Opt Comput Process 1:109–113 Google Scholar
  17. 17.
    Caulfield HJ (1992) Space – time complexity in optical computing.Multidimens Syst Signal Process 2:373–378 CrossRefGoogle Scholar
  18. 18.
    Shamir J, Caulfield HJ, Crowe DG (1991) Role of photon statistics in energy-efficient optical computers.Appl Opt 30:3697–3701 CrossRefGoogle Scholar
  19. 19.
    Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing.Science 220(4598):671–680MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Cerny V (1985) A thermodynamical approach to the travelling salesman problem: an efficient simulation algorithm.J Optim Theory Appl 45:41–51MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Das A, Chakrabarti BK (eds) (2005) Quantum Annealing and Related Optimization Methods.Lecture Notes in Physics, vol 679.Springer, Heidelberg Google Scholar
  22. 22.
    Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities.Proc Natl Acad Sci USA 79:2554–2558 MathSciNetCrossRefGoogle Scholar
  23. 23.
    Hinton GE, Sejnowski TJ (1986) Learning and Relearning in Boltzmann Machines. In: Rumelhart DE, McClelland JL (eds) and the PDP Research Group.Parallel Distributed Processing: Explorations in the Microstructure of Cognition. vol 1.Foundations. Cambridge MIT Press, Cambridge, pp 282–317Google Scholar
  24. 24.
    Benzi R, Parisi G, Sutera A, Vulpiani A (1983) A theory os stochastic resonance in climatic change.SIAM J Appl Math 43:565–578 MathSciNetCrossRefGoogle Scholar
  25. 25.
    Ilachinski A (2001) Cellular Automata: A Discrete Universe.World Scientific, Singapore MATHGoogle Scholar
  26. 26.
    Wolfram S (1983) Statistical mechanics of cellular automata.Rev Mod Phys 55:601–644 MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Kupiec SA, Caulfield HJ (1991) Massively parallel optical PLA.Int J Opt Comput 2:49–62 Google Scholar
  28. 28.
    Caulfield HJ, Soref RA, Qian L, Zavalin A, Hardy J (2007) Generalized optical logic elements – GOLEs.Opt Commun 271:365–376CrossRefGoogle Scholar
  29. 29.
    Caulfield HJ, Soref RA, Vikram CS (2007) Universal reconfigurable optical logic with silicon-on-insulator resonant structures.Photonics Nanostruct 5:14–20CrossRefGoogle Scholar

Books and Reviews

  1. 30.
    Bennett CH (1982) The thermodynamics of computation a review.Int J Theor Phys 21:905–940 CrossRefGoogle Scholar
  2. 31.
    Bernard W, Callen HB (1959) Irreversible thermodynamics of nonlinear processes and noise in driven systems.Rev Mod Phys 31:1017–1044 MathSciNetMATHCrossRefGoogle Scholar
  3. 32.
    Bub J (2002) Maxwell's Demon and the thermodynamics of computation. arXiv:quant-ph/0203017Google Scholar
  4. 33.
    Casti JL (1992) Reality Rules.Wiley, New YorkGoogle Scholar
  5. 34.
    Deutsch D (1985) Quantum Theory, the Church-Turing Principle and the Universal Quantum Computer.Proc Roy Soc Lond Ser A Math Phys Sci 400:97–117MathSciNetMATHCrossRefGoogle Scholar
  6. 35.
    Karplus WJ, Soroka WW (1958) Analog Methods: Computation and Simulation. McGraw Hill, New YorkGoogle Scholar
  7. 36.
    Leff HS, Rex AF (eds) (1990) Maxwell's Demon: Entropy, Information, Computing.Princeton University Press, PrincetonGoogle Scholar
  8. 37.
    Zurek WH (1989) Algorithmic randomness and physical entropy.Phys Rev Abstr 40:4731–4751MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • H. John Caulfield
    • 1
  • Lei Qian
    • 1
  1. 1.Fisk UniversityNashvilleUSA