Skip to main content

Synchronization Phenomena on Networks

  • Reference work entry
Computational Complexity
  • 241 Accesses

Article Outline

Glossary

Definition of the Subject

Introduction

Basic Concepts of Network Synchronization

Synchronizability Versus Structure

Enhancing Network Synchronizability

Future Research Outlook

Acknowledgments

Bibliography

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,500.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Synchronization:

A problem in time‐keeping, requiring the coordination of events to operate a system or a task in unison.

Distance:

A measure between two nodes, defined as the number of edges connecting them through the shortest paths.

Average distance:

The mean distance, averaged over all pairs of nodes on the network.

Clustering coefficient:

The probability that two randomly‐selected neighboring nodes of a node are directly connected each other.

Node‐degree:

The number of edges incident from a node.

Random‐graph network:

A type of graph obtained by starting with a set of nodes and then adding edges between them at random.

Small‐world network:

A type of graph in which most nodes are not neighbors of each other, but most nodes can be reached from any other node by a small number of connection steps; thus, a small‐world network is highly clustered like a regular graph, and yet with a small average distance, just like a random graph.

Scale‐free network:

A type of graph in which a small number of nodes have a large number of connections while a large number of nodes have a small number of connections, whose node‐degree distribution typically follows a power‐law form, with both structure and dynamics being independent of the network size.

Node‐betweenness:

A measure of the extent to which a given node is occupied by the amount of information passing through it via shortest paths between other nodes, namely, the portion of shortest paths between all pairs of nodes which have data traffic going through this particular node in the network.

Bibliography

  1. Albert R, Barabási AL (2002) Rev Mod Phys 74:47

    Google Scholar 

  2. Dorogovtsev SN, Mendes JFF (2002) Adv Phys 51:1079

    Article  Google Scholar 

  3. Newman MEJ (2003) SIAM Rev 45:167

    Article  MathSciNet  MATH  Google Scholar 

  4. Boccaletti S, Latora V, Moreno Y, Chaves M, Hwang DU (2006) Phys Rep424:175

    Article  MathSciNet  Google Scholar 

  5. da F Costa L, Rodrigues FA, Travieso G, Boas PRV (2007) Adv Phys56:167

    Article  Google Scholar 

  6. Pastor-Satorras R, Vespignani A (2001) Phys Rev Lett86:3200

    Article  Google Scholar 

  7. Zhu CP, Xiong SJ, Tian YJ, Li N, Jiang KS (2004) Phys Rev Lett92:218702

    Article  Google Scholar 

  8. Zhou T, Yan G, Wang BH (2005) Phys Rev E 71:046141

    Article  Google Scholar 

  9. Zhou T, Fu ZQ, Wang BH (2006) Prog Nat Sci 16:452

    Article  MathSciNet  MATH  Google Scholar 

  10. Zhou T, Liu JG, Bai WJ, Chen GR, Wang BH (2006) Phys Rev E74:056109

    Article  Google Scholar 

  11. Motter AE, Lai YC (2002) Phys Rev E 66:065102

    Article  Google Scholar 

  12. Goh KI, Lee DS, Kahng B, Kim D (2003) Phys Rev Lett91:148701

    Article  Google Scholar 

  13. Motter AE (2004) Phys Rev Lett 93:098701

    Article  Google Scholar 

  14. Zhou T, Wang BH (2005) Chin Phys Lett 22:1072

    Article  Google Scholar 

  15. Galstyan A, Cohen P (2007) Phys Rev E 75:036109

    Article  Google Scholar 

  16. Guimerá R, Díaz-Guilera A, Vega-Redondo F, Cabrales A, Arenas A (2002) PhysRev Lett 89:248701

    Google Scholar 

  17. Tadić B, Thurner S, Rodgers GJ (2004) Phys Rev E69:036102

    Google Scholar 

  18. Zhao L, Lai YC, Park K, Ye N (2005) Phys Rev E71:026125

    Article  Google Scholar 

  19. Yan G, Zhou T, Hu B, Fu ZQ, Wang BH (2006) Phys Rev E73:046108

    Article  Google Scholar 

  20. Wang BH, Zhou T (2007) J Korean Phys Soc 50:134

    Article  Google Scholar 

  21. Watts DJ, Strogatz SH (1998) Nature 393:440

    Article  Google Scholar 

  22. Barabási AL, Albert R (1999) Science 286:509

    Google Scholar 

  23. Strogatz SH, Stewart I (1993) Sci Am 269:102

    Article  Google Scholar 

  24. Gray CM (1994) J Comput Neurosci 1:11

    Article  Google Scholar 

  25. Néda Z, Ravasz E, Vicsek T, Barabási AL (2000) Phys Rev E61:6987

    Google Scholar 

  26. Glass L (2001) Nature 410:277

    Article  Google Scholar 

  27. Chen G, Dong X (1998) From Chaos Order.World Scientific,Singapore

    MATH  Google Scholar 

  28. Erdös P, Rényi A (1960) Pub Math Ins Hung Acad Sci5:17

    Google Scholar 

  29. Wang XF (2002) Int J Bifurc Chaos 12:885

    Article  MATH  Google Scholar 

  30. Heidelberger R (2007) Nature 450:625

    Article  Google Scholar 

  31. Heagy JF, Carroll TL, Pecora LM (1994) Phys Rev E50:1874

    Article  Google Scholar 

  32. Stefański A, Perlikowski P, Kapitaniak T (2007) Phys Rev E75:016210

    Google Scholar 

  33. Wu CW, Chua LO (1995) IEEE Trans Circuits Syst I42:430

    Article  MathSciNet  MATH  Google Scholar 

  34. Jost J, Joy MP (2001) Phys Rev E 65:016201

    Article  MathSciNet  Google Scholar 

  35. Gade PM (1996) Phys Rev E 54:64

    Article  Google Scholar 

  36. Manrubia SC, Mikhailov AS (1999) Phys Rev E60:1579

    Article  Google Scholar 

  37. Gade PM, Hu CK (1999) Phys Rev E 60:4966

    Article  Google Scholar 

  38. Gade PM, Hu CK (2000) Phys Rev E 62:6409

    Article  Google Scholar 

  39. Lago-Fernández LF, Huerta R, Corbacho F, Sigüenza JA (2000) Phys Rev Lett84:2758

    Google Scholar 

  40. Wang XF, Chen G (2002) Int J Bifurc Chaos Appl Sci Eng12:187

    Article  Google Scholar 

  41. Wang XF, Chen G (2002) IEEE Trans Circuits Syst I49:54

    Article  Google Scholar 

  42. Barahona M, Pecora LM (2002) Phys Rev Lett89:054101

    Article  Google Scholar 

  43. Jiang PQ, Wang BH, Bu SL, Xia QH, Luo XS (2004) Int J Mod Phys B18:2674

    Article  MATH  Google Scholar 

  44. Lind PG, Gallas JAC, Herrmann HJ (2004) Phys Rev E70:056207

    Article  Google Scholar 

  45. Pecora LM, Carrol TL (1998) Phys Rev Lett 80:2109

    Article  Google Scholar 

  46. Hu G, Yang J, Liu W (1998) Phys Rev E 58:4440

    Article  Google Scholar 

  47. Pecora LM, Barahona M (2005) Chaos Complex Lett1:61

    MATH  Google Scholar 

  48. Nishikawa T, Motter AE (2006) Phys Rev E73:065106

    Article  Google Scholar 

  49. Kuramoto Y (1975) In: Araki H (ed) Internaltional Symposium on MathematicalProblems in Theoretical Physics. Lecture Notes in Physics, vol 30.Springer, New York

    Google Scholar 

  50. Kuramoto Y (1984) Chemical Oscillations, Wave and Turbulence.Springer,Berlin

    Book  Google Scholar 

  51. Kuramoto Y, Nishikawa I (1987) J Stat Phys 49:569

    Article  MathSciNet  MATH  Google Scholar 

  52. Pikovsky A (2001) Synchronization.Cambridge University Press,Cambridge

    Book  MATH  Google Scholar 

  53. Acebrón JA, Bonilla LL, Vicente CJP, Ritort F, Spigler R (2005) Rev Mod Phys77:137

    Google Scholar 

  54. Nishikawa T, Motter AE, Lai YC, Hoppensteadt FC (2003) Phys Rev Lett91:014101

    Article  Google Scholar 

  55. Newman MEJ, Strogatz SH, Watts DJ (2001) Phys Rev E64:026118

    Article  Google Scholar 

  56. Dorogovtsev SN, Mendes JFF (2000) Phys Rev E62:1842

    Article  Google Scholar 

  57. Hong H, Kim BJ, Choi MY, Park H (2004) Phys Rev E69:067105

    Article  Google Scholar 

  58. Freeman L (1979) Soc Netw 1:215

    Article  Google Scholar 

  59. Newman MEJ (2001) Phys Rev E 64:016132

    Article  Google Scholar 

  60. Zhou T, Liu JG, Wang BH (2006) Chin Phys Lett23:2327

    Article  Google Scholar 

  61. Fan ZP (2006) Complex Networks: From Topology to Dynamics. Ph D Thesis, CityUniversity of Hong Kong

    Google Scholar 

  62. Zhao M, Zhou T, Wang BH, Yan G, Yang HJ, Bai WJ (2006) Physica A371:773

    Article  Google Scholar 

  63. Maslv S, Sneppen K (2002) Science 296:910

    Article  Google Scholar 

  64. Kim BJ (2004) Phys Rev E 69:045101(R)

    Google Scholar 

  65. McGraw PN, Menzinger M (2005) Phys Rev E72:015101

    Article  MathSciNet  Google Scholar 

  66. Gómez-Gardeñes J, Moreno Y, Arenas A (2007) Phys Rev Lett98:034101

    Google Scholar 

  67. Wu X, Wang BH, Zhou T, Wang WX, Zhao M, Yang HJ (2006) Chin Phys Lett23:1046

    Article  Google Scholar 

  68. Holme P, Kim BJ (2002) Phys Rev E 65: 026107

    Article  Google Scholar 

  69. Newman MEJ (2002) Phys Rev Lett 89:208701

    Article  Google Scholar 

  70. di Bernardo M, Garofalo F, Sorrentino F (2007) Int J Bifurc Chaos 17:3499

    Article  MathSciNet  Google Scholar 

  71. Sorrentino F, di Bernardo M, Cuéllar GH, Boccaletti S (2006) Physica D224:123

    Google Scholar 

  72. Chavez M, Hwang DU, Martinerie J, Boccaletti S (2006) Phys Rev E74:066107

    Article  MathSciNet  Google Scholar 

  73. Zhao M, Zhou T, Wang BH, Ou Q, Ren J (2006) Eru Phys J B53:375

    Article  Google Scholar 

  74. Huang L, Park K, Lai YC, Yang L, Yang K (2006) Phys Rev Lett97:164101

    Article  Google Scholar 

  75. Radicchi F, Castellano C, Cecconi F, Loreto V, Parisi D (2004) Proc Natl AcadSci USA 101:2658

    Article  Google Scholar 

  76. Zhou T, Zhao M, Chen G, Yan G, Wang BH (2007) Phys Lett A368:431

    Article  Google Scholar 

  77. Donetti L, Hurtado PI, Muñoz MA (2005) Phys Rev Lett95:188701

    Google Scholar 

  78. Motter AE, Zhou C, Kurths J (2005) Phys Rev E71:016116

    Article  Google Scholar 

  79. Motter AE, Zhou C, Kurths J (2005) Europhys Lett69:334

    Article  Google Scholar 

  80. Motter AE, Zhou C, Kurths J (2005) AIP Conf Proc776:201

    Article  MathSciNet  Google Scholar 

  81. Hwang DU, Chavez M, Amann A, Boccaletti S (2005) Phys Rev Lett94:138701

    Article  Google Scholar 

  82. Dorogovtsev SN, Mendes JFF, Samukhin AN (2000) Phys Rev Lett85:4633

    Article  Google Scholar 

  83. Krapivsky PL, Redner S (2001) Phys Rev E63:066123

    Article  Google Scholar 

  84. Zou Y, Zhu J, Chen G (2006) Phys Rev E 74:046107

    Article  Google Scholar 

  85. Chavez M, Hwang DU, Amann A, Hentschel HGE, Boccaletti S (2005) Phys Rev Lett94:218701

    Article  Google Scholar 

  86. Chavez M, Hwang DU, Amann A, Boccaletti S (2006) Chaos16:015106

    Article  MathSciNet  Google Scholar 

  87. Goh KI, Kahng B, Kim D (2001) Phys Rev Lett87:278701

    Article  Google Scholar 

  88. Wang X, Lai YC, Lai CH (2007) Phys Rev E75:056205

    Article  Google Scholar 

  89. Zhou C, Kurths J (2006) Phys Rev Lett 96:164102

    Article  Google Scholar 

  90. Huang D (2006) Phys Rev E 74:046208

    Article  MathSciNet  Google Scholar 

  91. Boccaletti S, Hwang DU, Chavez M, Amann A, Kurths J, Pecora LM (2006) Phys RevE 74:016102

    Article  MathSciNet  Google Scholar 

  92. Zhao M, Zhou T, Wang BH, Wang WX (2005) Phys Rev E72:057102

    Article  Google Scholar 

  93. Barthélemy M (2004) Eur Phys J B 38:163

    Google Scholar 

  94. Zhou T, Zhao M, Wang BH (2006) Phys Rev E73:037101

    Article  Google Scholar 

  95. Bondy JA, Murty USR (1976) Graph Theory with Applications.MacMillan,London

    MATH  Google Scholar 

  96. Bollobás B (1998) Modern Graph Theory.Springer, NewYork

    Google Scholar 

  97. Xu JM (2003) Theory and Application of Graphs.Kluwer,Dordrecht

    MATH  Google Scholar 

  98. Newman MEJ, Watts DJ (1999) Phys Rev E 60:7332

    Article  Google Scholar 

  99. Yin CY, Wang WX, Chen G, Wang BH (2006) Phys Rev E74:047102

    Article  Google Scholar 

  100. Comellas F, Gago S (2007) J Phys A Math Theor40:4483

    Article  MathSciNet  MATH  Google Scholar 

  101. Duan Z, Chen G, Huang L (2007) Phys Rev E 76:056103

    Article  Google Scholar 

  102. Duan Z, Chen G, Huang L (2007) Phys Lett A 372:3741

    Article  MathSciNet  Google Scholar 

  103. Duan Z, Liu C, Chen G (2008)Physica D 237:1006

    Article  MathSciNet  MATH  Google Scholar 

  104. Friedland B (1986) Control System Design.McGraw-Hill, New York

    Google Scholar 

  105. Tsuneda A (2005) Int J Bifurc Chaos 15:1

    Article  MathSciNet  MATH  Google Scholar 

  106. Um J, Han SG, Kim BJ, Lee SI (2008)(unpublished)

    Google Scholar 

  107. Akyildiz IF, Su W, Sankarasubramaniam Y, Cayirci E (2002) Comput Netw38:393

    Article  Google Scholar 

  108. Oqren P, Fiorelli E, Leonard NE (2004) IEEE Trans Automat Contr49:1292

    Article  Google Scholar 

  109. Arai T, Pagello E, Parker LE (2002) IEEE Trans Robot Automat18:655

    Article  Google Scholar 

  110. Couzin LD, Krause J, Franks NR, Levin SA (2005) Nature433:513

    Article  Google Scholar 

  111. Zhang HT, Chen M, Zhou T (2007) arXiv:0707.3402

  112. Arenas A, Díaz-Guilera A, Pérez-Vicente CJ (2006) Phys Rev Lett96:114102

    Google Scholar 

  113. Boccaletti S, Ivanchenko M, Latora V, Pluchino A, Rapisarda A (2007) PhysRev E 75:045102(R)

    Article  Google Scholar 

  114. Timme M (2007) Phys Rev Lett 98:224101

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the American Physics Society and the Elsevier Publisher for their permission to use some of their publishedsimulation figures, which have all been referenced (in the figure captions). The authors also thank Dr. Jian-Guo Liu for his helpful commentsand suggestions. G.R.C. was supported by the NSFC/RGC joint research scheme under grant N‑CityU107/07.B.H.W. was supported by the NNSFCunder Grants 10472116 and A0524701, and the Specialized Program under the Presidential Funds of CAS. T.Z. was supported by NNSFC under Grants10635040 and 70471033.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag

About this entry

Cite this entry

Chen, G., Zhao, M., Zhou, T., Wang, BH. (2012). Synchronization Phenomena on Networks. In: Meyers, R. (eds) Computational Complexity. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1800-9_196

Download citation

Publish with us

Policies and ethics