Skip to main content

Stochastic Loewner Evolution: Linking Universality, Criticality and Conformal Invariance in Complex Systems

  • Reference work entry
  • 289 Accesses

Article Outline

Glossary

Definition of the Subject

Introduction

Scaling

Conformal Invariance

Loewner Evolution

Stochastic Loewner Evolution

Results and Discussion

Future Directions

Acknowledgments

Bibliography

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   1,500.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Bessel process :

The Bessel process operates in d dimensions and describes the radial distance r from the origin of a particle performing Brownian motion. The random motion is governed by the Langevin equation \( { \text{d} r/\text{d} t=\kappa(d-1)/2r+\xi } \), where \( { \langle\xi\xi\rangle(t)=\kappa\delta(t) } \). For \( { d\leq 2 } \) the motion is recurrent, i. e., returns to the origin; for \( { d > 2 } \) the motion goes off to infinity. In SLE the Bessel process describes the transition between simple curves and self‐intersecting curves.

Brownian motion :

Brownian motion, B t , is the scaling limit of random walk. Brownian motion is plane‐filling, has the fractal dimension \( { D=2 } \), and is described by the Langevin equation \( \text{d} B_t/\text{d} t=\eta_t, \langle\eta_t\eta_s\rangle= {\delta(t-s)} \). B t is characterized by i) the stationarity property, \( B_{t+t^{\prime}}-B_{t} \) and \( B_{t^{\prime}} \) identical in distribution and ii) the independence property, \( B_{\Delta t^{\prime}} \) and \( B_{\Delta t} \) independent for \( \Delta t\neq\Delta t^{\prime} \). The correlations are given by \( \langle\vert B_t-B_{s}\vert ^2\rangle=\vert t-s\vert \) and B t is distributed according to the Gaussian (normal) distribution \( P(B,t)=(2\pi t)^{-1/2}\exp(-B^2/2t) \).

Chordal SLE :

In order to map the geometry of the growing hull to a real function by means of SLE one chooses a reference domain. Chordal SLE refers to the case where the SLE trace is grown between two boundary points, usually the origin and the point at infinity in the upper half complex plane.

Conformal invariance :

Conformal invariance or local scale invariance is a larger symmetry than scale invariance. Conformal invariance implies invariance under both a local rotation, translation, and dilatation. Conformal invariance is particularly powerful in 2D where a conformal transformation is implemented by an analytic function.

Conformal transformation :

A conformal transformation is a transformation which preserves angles but allows for rotation, dilatation, and translation. In an elastic medium picture a conformal transformation corresponds to translation, rotation, and compression (dilatation), but not shear. In 2D an analytic complex function \( { w=f(z) } \) from the complex z plane to the complex w plane generates a conformal transformation.

Continuum limit :

The limit where a lattice model approaches a continuum model; also called the scaling limit. The resulting continuum field theories define the universality classes of the lattice models.

Correlation length :

The correlation length measures the size of correlations. At the critical point the correlation length diverges signaling that the system becomes scale invariant.

Critical curves :

Critical curves are domain walls or cluster boundaries at the critical point. Critical curves are scale invariant and characterized by a fractal dimension.

Exploration :

Domain walls at the critical point can mathematically be generated by an exploration process where the domain wall is initiated at a boundary point and constructed in steps across the domain. In the percolation case the local step is generated by ‘flipping a coin’, in the Ising case by evaluating the magnetization at the tip of the ‘growing’ domain wall. The construction by an exploration process is essential in generating a critical curve by stochastic Loewner evolution.

Fortuin–Kasteleyn representation (FK):

Based on a high temperature expansion one can represent the configurations in the Ising, O(n), and Potts models by means of the Fortuin–Kasteleyn representation in terms of random clusters. The FK transformation is essential in identifying random curves for the lattice models which then can be accessed by SLE in the scaling limit.

Fractal dimension :

Irregular objects can be characterized by a fractal dimension. The fractal dimension D is derived by covering the object with \( { N(\ell) } \) intervals, disks, or spheres of linear dimension ℓ. By letting \( { \ell\rightarrow 0 } \) this definition resolves the fine scale fractal structure and the scaling relation \( { N(\ell)\propto (\ell)^{-D} } \), or \( { D=-\lim_{\ell\rightarrow 0}\ln(N(\ell)/\ln(\ell) } \), yields the fractal dimension. Examples of deterministic fractals are for example the Cantor set, the Koch curve, the Sierpinski gasket, and plane‐filling Hilbert and Peano curves. Random walk and diffusion limited aggregation (DLA) are examples of random physical fractals.

Hulls :

For a self‐intersecting SLE trace the trace and enclosed regions form a so‐called hull. Points in the hull cannot be connected to infinity without crossing the trace. The growing hull of a self‐intersecting SLE trace eventually exhausts the half plane.

Ising model :

The Ising model originates from the theory of magnetism and plays an important role in the theory of phase transitions and in general in statistical mechanics. The model is defined on a lattice where each lattice sites is endowed with a local spin variable assuming two distinct values. The spins interact by a short range exchange interaction. Above 1D the Ising model has a second order phase transition.

Locality :

In the percolation case the domain wall is constructed by an exploration process and a local rule for assigning the next step. This locality property is specific to percolation which has a geometric phase transition. In the SLE context the locality property implies \( { \kappa = 6 } \), i. e., the percolation case.

Loewner equation :

The Loewner equation is the first order nonlinear differential equation for the uniformizing map \( { g_t(z) } \) which maps the complement of a growing hull or curve in the upper half plane back to the upper half plane. The geometrical properties of the hull is encoded in the real function a t . The Loewner equation has the form \( { \text{d} g_t/\text{d} t=2/(g_t-a_t) } \).

Loewner evolution :

Loewner evolution refers to the parametrized map \( { g_t(z) } \) which uniformizes the complement of a curve or hull, say in the upper half plane.

Loop erased random walk (LERW):

Loop erased random walk is a variant of random walk where loops formed are removed as the walk progresses. LERW has a conformally invariant scaling limit and can be generated by SLE for \( { \kappa=2 } \).

Markov property :

The Markov property refers to a stochastic process without memory. A typical example is random walk or in the scaling limit Brownian motion. The Markov property is essential for the application of SLE to domain walls in the scaling limit.

Measures :

For lattice systems one can define probability distributions according to the rules of statistical mechanics. In the scaling limit the distributions typically diverge and have to be replaced by the more abstract mathematical concept of probability measures.

O(n) models :

The O(n) model is a generalization of the Ising model. At each lattice site is associated an n‑component spin variable. For \( { n=1 } \) we recover the Ising model, \( { n=2 } \) corresponds to the XY model, and \( { n=3 } \) to the Heisenberg model.

Peano curve :

A Peano curve is a non‐crossing curve which is dense in the plane, i. e., it gets arbitrarily close to every point. The Peano curve has the fractal dimension \( { D=2 } \). In a SLE context a random Peano curve winds around a UST and corresponds to \( { \kappa=8 } \).

Percolation :

Percolation on a lattice is constructed by filling lattice sites at random with a common probability p. At a critical concentration a spanning cluster extends across the system.

Potts model :

The Potts model is a generalization of the Ising model where the local lattice variable can assume q different values and where sites only interact when they are in the same Potts state. The Potts model has a FK cluster representation. The Ising model corresponds to \( { q=2 } \); \( { q=1 } \) corresponds to percolation and \( { q=0 } \) to the UST.

Random walk :

Random walk is an ubiquitous phenomenon in nature. In random walk on a square lattice a particle jump from site to site with a given fixed probability. Each step is independent of the past history, there is no memory, this is the so‐called Markov property. The random walk path or history is plane‐filling and has the fractal dimension \( { D=2 } \). The mean square displacement of random walk scales with the number of steps.

Restriction :

The restriction property in a SLE context implies that the measure on a curve in a domain D conditioned not to hit a bulge L is the same as the measure in the domain \( { D\setminus L } \). The restriction property holds in the case of a uniform measure and applies to self‐avoiding random walk.

Riemann's mapping theorem :

Riemann's mapping theorem states that an arbitrary simply connected domain D, i. e., without holes, can be mapped to another simply connected domain \( { D^{\prime} } \) by means of a suitable complex function g(z), i. e., \( { g(D)=D^{\prime} } \). Often the disk or half plane are used as reference domains. The mapping theorem does not make assumptions about the domain boundaries which can be fractal.

Scale invariance :

The scaling property refers to the case where a phenomenon is devoid of a characteristic scale or unit. Scale invariance is typically characterized by a power law behavior and critical exponents.

Scaling limit :

The limit where the lattice parameter in a lattice model approaches zero. The scaling limit is equivalent to the continuum limit.

Self‐avoiding random walk (SAW):

A self‐avoiding random walk is a walk conditioned not to cross itself. SAW has been used to model polymers. SAW has a uniform probability measure and conforms in a SLE context to the restriction condition.

Stochastic Loewner evolution (SLE):

Stochastic Loewner evolution is Loewner evolution driven by a real stochastic function a t with a distribution given by 1D Brownian motion, i. e., \( { a_t=\sqrt\kappa B_t } \). SLE is governed by the stochastic equation of motion \( { \text{d} g_t/\text{d} t=2/(g_t-a_t) } \).

Schramm's theorem :

Schramm's theorem refers to Schramm's derivation of SLE for LERW. Schramm showed that the scaling limit of LERW is described by SLE for \( { \kappa=2 } \). Schramm also conjectured that the random Peano curve winding around an UST is described by SLE for \( { \kappa=8 } \) and that percolation is described by SLE for \( { \kappa=6 } \).

Uniformizing maps :

Conformal transformations which map a domain D to a standard reference domain, e. g., the half plane or the disk, are called uniformizing maps.

Uniform spanning tree (UST):

A spanning tree is a collection of vertices and links forming a tree (no loops or cycles). A USF is a random tree picked among all spanning trees with equal probability.

Bibliography

  1. Ahlfors LV (1966) Complex analysis: An introduction to the theory of analyticalfunctions of one complex variable. McGraw‐Hill, New York

    Google Scholar 

  2. Ahlfors LV (1973) Conformal invariance: Topics in geometric functiontheory. McGraw‐Hill, New York

    MATH  Google Scholar 

  3. Amoruso C, Hartmann AK, Hastings MB, Moore MA (2006) Conformal invariance andstochastic Loewner evolution processes in two‐dimensional Ising spin glasses. Phys Rev Lett97(4):267202. arXiv:cond-mat/0601711

    Article  Google Scholar 

  4. Ash RB, Doléans CA (2000) Probability and measure theory. Academic, SanDiego

    Google Scholar 

  5. Bak P (1999) How nature works: The science of self‐organizedcriticality. Springer, New York

    Google Scholar 

  6. Bauer M, Bernard D (2002) \( { \text{SLE}_{\kappa} } \) growth processes and conformal field theory. Phys Lett B543:135–138. arXiv:math.PR/0206028

    Article  MathSciNet  MATH  Google Scholar 

  7. Bauer M, Bernard D (2003) Conformal field theories of stochastic Loewnerevolutions. Comm Math Phys 239:493–521. arXiv:hep-th/0210015

    Article  MathSciNet  MATH  Google Scholar 

  8. Bauer M, Bernard D (2003) SLE martingales and the Viasoro algebra. Phys Lett B557:309–316. arXiv:hep-th/0301064

    Article  MathSciNet  MATH  Google Scholar 

  9. Bauer M, Bernard D (2004) CFTs of SLEs: The radial case. Phys Lett B583:324–330. arXiv:math-ph/0310032

    Article  MathSciNet  MATH  Google Scholar 

  10. Bauer M, Bernard D (2004) Conformal transformations and the SLE partitionfunction martingale. Ann Henri Poincare 5:289–326. arXiv:math-ph/0305061

    Google Scholar 

  11. Bauer M, Bernard D (2004) Loewnerchains. arXiv:cond-mat/0412372

  12. Bauer M, Bernard D (2004) SLE, CFT and zig-zag probabilities. Proceedings ofthe conference ‘Conformal Invariance and Random Spatial Processes’, Edinburgh, July2003. arXiv:math-ph/0401019

  13. Bauer M, Bernard D (2006) 2D growth processes: SLE and Loewner chains. PhysRep 432:115–221

    Article  MathSciNet  Google Scholar 

  14. Baxter RJ (1982) Exactly solved models in statistical mechanics. Academic,London

    MATH  Google Scholar 

  15. Beffara V (2002) The dimension of SLEcurves. arXiv:math.PR/0211322

  16. Beffara V (2003) Hausdorff dimensions for \( { \text{SLE}_6 } \). Ann Probab32:2606–2629. arXiv:math.PR/0204208

    Article  MathSciNet  Google Scholar 

  17. Bernard D, Boffetta G, Celani A, Falkovich G (2006) Conformal invariance intwo‐dimensional turbulence. Nat Phys 2:124–128

    Article  Google Scholar 

  18. Bernard D, Le Doussal P, Middleton AA (2006) Are domain walls in 2D spinglasses described by stochastic Loewner evolutions. arXiv:cond-mat/0611433

  19. Bernard D, Boffetta G, Celani A, Falkovich G (2007) Inverse turbulent cascadesand conformally invariant curves. Phys Rev Lett 98:024501(4). arXiv:nlin.CD/0602017

    Article  Google Scholar 

  20. Binney JJ, Dowrick NJ, Fisher AJ, Newman MEJ (1992) The theory of criticalphenomena. Clarendon, Oxford

    MATH  Google Scholar 

  21. Camia F, Newman CM (2003) Continuum nonsimple loops and 2D criticalpercolation. arXiv:math.PR/0308122

  22. Cardy J (1987) Conformal invariance. In: Domb C, Lebowitz JL (eds) Phasetransitions and critical phenomena, vol 11. Academic, London

    Google Scholar 

  23. Cardy J (1993) Conformal field theory comes of age. Physics World, June,6:29–33

    Google Scholar 

  24. Cardy J (1996) Scaling an renormalization in statistical physics. CambridgeUniversity Press, Cambridge

    Google Scholar 

  25. Cardy J (2002) Conformal invariance in percolation, self‐avoiding walksand related problems. Plenary talk given at TH-2002, Paris. arXiv:cond-mat/0209638

  26. Cardy J (2003) Stochastic Loewner evolution and Dyson's circularensembles. J Phys A 36:L379–L408. arXiv:math-ph/0301039

    Article  MathSciNet  MATH  Google Scholar 

  27. Cardy J (2005) SLE for theoretical physicists. Ann Phys318:81–118. arXiv:cond-mat/0503313

    Article  MathSciNet  MATH  Google Scholar 

  28. Cardy J (2006) The power of two dimensions. Nat Phys2:67–68

    Article  Google Scholar 

  29. Chaikin PM, Lubensky TC (1995) Principles of condensed matterphysics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  30. de Gennes PG (1985) Scaling concepts in polymer physics. Cornell UniversityPress, Ithaca

    Google Scholar 

  31. Duplantier B (2000) Conformally invariant fractals and potential theory. PhysRev Lett 84:1363–1367. arXiv:cond-mat/9908314

    Article  MathSciNet  MATH  Google Scholar 

  32. Feder J (1988) Fractals (physics of solids and liquids). Springer, NewYork

    Google Scholar 

  33. Fisch R (2007) Comment on conformal invariance and stochastic Loewnerevolution processes in two‐dimensional Ising spin glasses. arXiv:0705.0046

  34. Fischer KH, Hertz JA (1991) Spin glasses. Cambridge University Press,Cambridge

    Book  Google Scholar 

  35. Fortuin CM, Kasteleyn PW (1972) On the random cluster model. Physica57:536–564

    Article  MathSciNet  Google Scholar 

  36. Gamsa A, Cardy J (2007) SLE in the three-state Potts model –a numerical study. arXiv:0705.1510

  37. Gardiner CW (1997) Handbook of stochastic methods. Springer, NewYork

    MATH  Google Scholar 

  38. Gong S (1999) The Bieberbach conjecture. RI American 19. MathematicalSociety. International, Providence

    Google Scholar 

  39. Gruzberg IA, Kadanoff LP (2004) The Loewner equation: Maps andshapes. J Stat Phys 114:1183–1198. arXiv:cond-mat/0309292

    Article  MathSciNet  MATH  Google Scholar 

  40. Jensen HJ (2000) Self‐organized criticality: Emergent complex behaviorin physical and biological systems. Cambridge University Press, Cambridge

    Google Scholar 

  41. Kadanoff LP (1966) Scaling laws for Ising models near T c . Physics 2:263–271

    Google Scholar 

  42. Kadanoff LP, Berkenbusch MK (2004) Trace for the Loewner equation withsingular forcing. Nonlinearity 17:R41–R54. arXiv:cond-mat/0402142

    Article  MathSciNet  Google Scholar 

  43. Kager W, Nienhuis B (2004) A guide to stochastic Loewner evolution andits application. J Stat Phys 115:1149–1229

    Article  MathSciNet  MATH  Google Scholar 

  44. Kager W, Nienhuis B, Kadanoff LP (2004) Exact solutions for loewnerevolutions. J Stat Phys 115:805–822

    Article  MathSciNet  MATH  Google Scholar 

  45. Kauffman SA (1996) At home in the universe: The search for the laws ofself‐organization and complexity. Oxford University Press, Oxford

    Google Scholar 

  46. Kennedy T (2002) Monte Carlo tests of stochastic Loewner evolution predictionsfor the 2D self‐avoiding walk. Phys Rev Lett 88(4):130601. arXiv:math.PR/0112246

    Article  Google Scholar 

  47. Kennedy T (2004) Conformal invariance and stochastic Loewner evolutionpredictions for the 2D self‐avoiding walk – Monte Carlo tests. J Stat Phys114:51–78. arXiv:math.PR/0207231

    Article  MATH  Google Scholar 

  48. Kennedy T (2005) Monte Carlo comparisons of the self‐avoiding walk andSLE as parameterized curves. arXiv:math.PR/0510604v1

  49. Kennedy T (2006) The length of an SLE – Monte Carlostudies. arXiv:math.PR/0612609v1

  50. Kennedy T (2007) Computing the Loewner driving process of random curves in thehalf plane. arXiv:math.PR/0702071v1

  51. Kolmogorov AN (1941) Dissipation of energy in the locally isotropicturbulence. Dokl Akad Nauk SSSR 30:9–13. (Reprinted in Proc Royal Soc Lond A 434:9–13 (1991))

    Google Scholar 

  52. Kraichnan RH (1967) Inertial ranges in two‐dimensional turbulence. PhysFluids 10:1417–1423

    Article  Google Scholar 

  53. Kraichnan RH, Montgomery D (1980) Two‐dimensional turbulence. Rep ProgPhys 43:567–619

    Article  MathSciNet  Google Scholar 

  54. Landau LD, Lifshitz EM (1959) Theory of elasticity. Pergamon,Oxford

    Google Scholar 

  55. Lawler GF (2004) ICTP Lecture Notes Series. 17:307–348

    Google Scholar 

  56. Lawler GF (2005) Conformally invariant processes in the plane. In:Mathematical Surveys and Monographs, vol 114. AMS, Providence

    Google Scholar 

  57. Lawler GF, Schramm O, Werner W (2001) Conformal invariance of planarloop‐erased random walks and uniform spanning trees. Ann Prob 32:939–995. arXiv:math.PR/0112234

    MathSciNet  Google Scholar 

  58. Lawler GF, Schramm O, Werner W (2001) The dimension of the planar Brownianfrontier is \( { 4/3 } \). Math Res Lett8:401–411. arXiv:math.PR/00010165

    MathSciNet  MATH  Google Scholar 

  59. Lawler GF, Schramm O, Werner W (2001) Values of Brownian intersectionsexponents I: Half plane exponents. Acta Math 187:237–273. arXiv:math.PR/9911084

    Article  MathSciNet  MATH  Google Scholar 

  60. Lawler GF, Schramm O, Werner W (2001) Values of Brownian intersectionsexponents II: Plane exponents. Acta Math 187:275–308. arXiv:math.PR/0003156

    Article  MathSciNet  MATH  Google Scholar 

  61. Lawler GF, Schramm O, Werner W (2002) On the scaling limit of planarself‐avoiding walk. Fractal geometry and application, a jubilee of Benoit Mandelbrot, Part 2, 339–364, Proc. Sympos. Pure Math., 72, Part2, Amer. Math. Soc., Providence, RI, 2004. arXiv:math.PR/0204277

  62. Lawler GF, Schramm O, Werner W (2002) Values of Brownian intersectionsexponents III: Two-sided exponents. Ann Inst Henri Poincare 38:109–123. arXiv:math.PR/0005294

    Google Scholar 

  63. Lawler GF, Schramm O, Werner W (2003) Conformal restriction: The chordalcase. J Amer Math Soc 16:917–955. arXiv:math.PS/0209343

    Article  MathSciNet  MATH  Google Scholar 

  64. Löwner K (Loewner C) (1923) Untersuchungen über schlichte konformeAbbildungen des Einheitskreises. I Math Ann 89:103–121

    Google Scholar 

  65. Ma S-K (1976) Modern theory of critical phenomena. Frontiers in Physics, vol 46. Benjamin, Reading

    Google Scholar 

  66. Mackenzie D (2000) Taking the measure of the wildest dance on earth. Science290:1883–1884

    Article  Google Scholar 

  67. Majumbar SN (1992) Exact fractal dimension of the loop‐erasedself‐avoiding walk in two dimensions. Phys Rev Lett 68:2329–2331

    Article  Google Scholar 

  68. Mandelbrot B (1987) The fractal geometry of nature. Freeman, NewYork

    MATH  Google Scholar 

  69. Moore M (2007) private communication

    Google Scholar 

  70. Nicolis G (1989) Exploring complexity: An introduction. Freeman, NewYork

    Google Scholar 

  71. Nienhuis B (1987) Coulomb gas formulation of two‐dimensional phasetransitions. In: Domb C, Lebowitz JL (eds) Phase transitions and critical phenomena, vol 11. Academic, London

    Google Scholar 

  72. Pfeuty P, Toulouse G (1977) Introduction to the renormalization group and tocritical phenomena. Wiley, New York

    Google Scholar 

  73. Reichl LE (1998) A modern course in statistical physics. Wiley, NewYork

    MATH  Google Scholar 

  74. Rohde S, Schramm O (2001) Basic properties of SLE. Ann Math161:879–920. arXiv:mathPR/0106036

    MathSciNet  Google Scholar 

  75. Rushkin I, Oikonomou P, Kadanoff LP, Gruzberg IA (2006) Stochastic Loewnerevolution driven by Levy processes. J Stat Mech (2006) 01:P01001. arXiv:cond-mat/0509187

  76. Saleur H, Duplantier B (1987) Exact determination of the percolation hullexponent in two dimensions. Phys Rev Lett 58:2325–2328

    Article  MathSciNet  Google Scholar 

  77. Schramm O (2000) Scaling limit of loop‐erased random walks and uniformspanning trees. Israel J Math 118:221–288. arXiv:math.PR/9904022

    Article  MathSciNet  MATH  Google Scholar 

  78. Smirnov S (2001) Critical percolation in the plane: Conformal invariance,Cardy's formula, scaling limits. C R Acad Sci Paris Ser I Math 333(3):239–244

    Article  MathSciNet  MATH  Google Scholar 

  79. Smirnov S (2006) Towards conformal invariance of 2D latticemodels. Proceedings of the international congress of mathematicians (Madrid, August 22–30, 2006). Eur Math Soc2:1421–1451

    Google Scholar 

  80. Smirnov S, Werner W (2001) Critical exponents for two‐dimensionalpercolation. Math Res Lett 8:729–744

    MathSciNet  MATH  Google Scholar 

  81. Stanley HE (1987) Introduction to phase transitions and criticalphenomena. Oxford University Press, Oxford

    Google Scholar 

  82. Stauffer D, Aharony A (1994) Introduction to percolation theory. CRC, BocaRaton

    Google Scholar 

  83. Strogatz S (2003) Sync: The emerging science of spontaneous order. Hyperion,New York

    Google Scholar 

  84. Vanderzande C, Stella AL (1989) Bulk, surface and hull fractal dimension ofcritical Ising clusters in \( { d=2 } \). J Phys A: Math Gen 22:L445–L451

    Article  Google Scholar 

  85. Werner W (2004) Random planar curves and Schramm–Loewnerevolutions. Springer Lecture Notes in Mathematics 1840:107–195. arXiv: math.PR/0303354

    Google Scholar 

  86. Wilson KG, Kogut J (1974) The renormalization group and the εexpansion. Phys Rep 12:75–199

    Article  Google Scholar 

  87. Wu FY (1982) The Potts model. Rev Mod Phys54:235–268

    Article  Google Scholar 

  88. Zoia A, Kantor Y, Kardar M (2007) Distribution of first passage times anddistances along critical curves. arXiv:0705.1474v1 [cond-mat.stat-mech]

Download references

Acknowledgments

The present work has been supported by the Danish Natural Science Research Council.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag

About this entry

Cite this entry

Fogedby, H.C. (2012). Stochastic Loewner Evolution: Linking Universality, Criticality and Conformal Invariance in Complex Systems. In: Meyers, R. (eds) Computational Complexity. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1800-9_192

Download citation

Publish with us

Policies and ethics