Skip to main content

Quantum Error Correction and Fault Tolerant Quantum Computing

  • Reference work entry
Computational Complexity

Article Outline

Glossary

Definition of the Subject

Introduction

Basics of Classical Error Correction

Basic Ideas of Quantum Error Correction

A Simple Example and Shor's Nine-Qubit Code

Conditions for Quantum Error Correction

Quantum Codes from Classical Codes

Techniques for Fault-Tolerant Quantum Computing

The Threshold Theorem

Further Aspects

Bibliography

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,500.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ancilla qubits:

Refers to qubits that are used to facilitate quantum computations, but serve neither as input nor as output of the computation. The two main uses of ancilla qubits are a) for the purpose of a scratch pad during a quantum computation, i. e., states that are initialized in a known state and can be used during a computation such that they are returned to the initial state at the end, and b) for the purpose of quantum error correction where they serve as space for holding the error syndrome.

Bit-flip error:

An error that affects a single qubit and interchanges the basis states of that qubit.

CSS code:

A special class of quantum codes named after their inventors Calderbank, Steane, and Shor. CSS codes allow to construct quantum codes from certain classical error-correcting codes.

CNOT gate:

The controlled-NOT gate is an example of a quantum gate. It is a two qubit gate and – together with single qubit gates – can be shown to be a universal gate for quantum computation.

Error syndrome:

A classical bit-vector that describes a quantum error that has affected a quantum code. Contrary to the classical case where there is a one-to-one correspondence between syndromes and errors, in the quantum case a syndrome does in general not uniquely identify a quantum error.

Fault-tolerant quantum computing:

The discipline that studies how to perform reliable quantum computations with imperfect hardware.

Phase-flip error:

An error that affects a single qubit and gives a relative phase of −1 to the basis states of that qubit. Contrary to the bit-flip error, this error has no classical analog.

Quantum channel:

A term describing a general physical operation that can affect the state of a quantum-mechanical system. Another name for quantum channels are completely-positive trace preserving maps.

Quantum error-correcting code (QECC):

A method to introduce redundancy to a quantum mechanical system in such a way that certain errors that are affecting the system can be detected or corrected.

Quantum circuits:

Operations that a quantum computer can carry out. Quantum circuits are composed of quantum gates and, when acting on an n qubit system, correspond to unitary matrices of size \( { 2^n \times 2^n } \).

Quantum gate:

A basic operation that a quantum computer can carry out. Common choices for quantum gates are certain unitary matrices of size \( { 2\times 2 } \) (single qubit gates) or \( { 4 \times 4 } \) (two qubit gates).

Qubit:

Shortened form of quantum bit. A physical object that can support states in a two-dimensional complex Hilbert space. Contrary to the classical case where a bit refers to both, the physical object and the states it can hold, a qubit refers to the physical object only. Qubits are the basic units of a quantum computer's memory.

Stabilizer code:

A class of quantum codes that is defined as the joint eigenspace of a group of commuting operators. Stabilizer codes give rise to many examples of quantum codes, comprise the class of CSS codes as a special case, and are equivalent to additive codes over GF(4) that are self-orthogonal with respect to the Hermitian inner product.

Threshold theorem:

An important result of the theory of fault-tolerant quantum computing, stating that there is a threshold value for this noise level such that arbitrarily long quantum computations become possible if the gates have a noise level that is under the threshold.

Transversal gates:

Special class of operations acting on encoded quantum data. Transversal gates have the important property to exhibit benign behavior in case errors happen during the application of the gate.

Bibliography

  1. Aaronson S, Gottesman D (2004) Improved simulation of stabilizer circuits. Phys Rev A 70(5):052328

    Article  Google Scholar 

  2. Aharonov D, Ben-Or M (1997) Fault‐tolerant quantum computation with constant error. In: Proceedings of 29th ACM symposium on theory of computing (STOC'97). ACM, El Paso, pp 176–188

    Chapter  Google Scholar 

  3. Aliferis P, Gottesman D, Preskill J (2006) Quantum accuracy threshold for concatenated distance-3 codes. Quantum Inf Comput 6(2):97–165

    MathSciNet  MATH  Google Scholar 

  4. Aliferis P, Gottesman D, Preskill J (2008) Accuracy threshold for postselected quantum computation. Quantum Inf Comput 8:181–244

    MathSciNet  MATH  Google Scholar 

  5. Anders S, Briegel HJ (2006) Fast simulation of stabilizer circuits using a graph-state representation. Phys Rev A 73:022334

    Article  Google Scholar 

  6. Ashikhmin A, Knill E (2001) Nonbinary quantum stabilizer codes. IEEE Trans Inf Theory 47(7):3065–3072

    Article  MathSciNet  MATH  Google Scholar 

  7. Avizienis A, Laprie JC, Randell B, Landwehr C (2004) Basic concepts and taxonomy of dependable and secure computing. IEEE Trans Dependable Secur Comput 1(1):11–33

    Article  Google Scholar 

  8. Bacon D (2006) Operator quantum error‐correcting subsystems for self‐correcting quantum memories. Phys Rev A 73:012340

    Article  Google Scholar 

  9. Barenco A, Berthiaume A, Deutsch D, Ekert A, Macciavello C (1997) Stabilization of quantum computations by symmetrization. SIAM J Comput 26(5):1541–1557

    Article  MathSciNet  MATH  Google Scholar 

  10. Bennett CH, Brassard G, Crepeau C, Jozsa R, Peres A, Wootters W (1993) Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys Rev Lett 70(13):1895–1899

    Article  MathSciNet  MATH  Google Scholar 

  11. Bennett CH, DiVincenzo DP, Smolin JA, Wootters WK (1996) Mixed-state entanglement and quantum error correction. Phys Rev A 54(5):3824–3851

    Article  MathSciNet  Google Scholar 

  12. Berlekamp ER, McEliece RJ, van Tilborg HCA (1978) On the inherent intractability of certain coding problems. IEEE Trans Inf Theory 24(3):384–386

    Article  MATH  Google Scholar 

  13. Brun T, Devetak I, Hsieh MH (2006) Correcting quantum errors entanglement. Science 314(5798):436–439

    Article  MathSciNet  MATH  Google Scholar 

  14. Calderbank AR, Rains EM, Shor PW, Sloane NJA (1998) Quantum error correction via codes over GF(4). IEEE Trans Inf Theory 44(4):1369–1387

    Article  MathSciNet  MATH  Google Scholar 

  15. Calderbank AR, Shor PW (1996) Good quantum error‐correcting codes exist. Phys Rev A 54(2):1098–1105

    Article  Google Scholar 

  16. Camara T, Ollivier H, Tillich JP (2005) Constructions and performance of classes of quantum LDPC codes. Preprint quant-ph/0502086

    Google Scholar 

  17. Chau HF (1998) Quantum convolutional codes. Phys Rev A 58(2):905–909

    Article  MathSciNet  Google Scholar 

  18. Cleve R, Gottesman D (1997) Efficient computations of encodings for quantum error correction. Phys Rev A 56(1):76–82

    Article  Google Scholar 

  19. Cross AW, DiVincenzo DP, Terhal BM (2007) A comparative code study for quantum fault tolerance. Preprint arXiv:0711.1556 [quant-ph]

    Google Scholar 

  20. Dennis E, Kitaev A, Landahl A, Preskill J (2002) Topological quantum memory. J Math Phys 43:4452

    Article  MathSciNet  MATH  Google Scholar 

  21. DiVincenzo DP (2000) The physical implementation of quantum computation. Fortschr Phys 48(9–11):771–783

    Article  MATH  Google Scholar 

  22. Duan LM, Guo CC (1997) Preserving coherence in quantum computation by pairing quantum bits. Phys Rev Lett 79(10):1953–1956

    Article  Google Scholar 

  23. Elnozahy EN, Alvisi L, Wang YM, Johnson DB (2002) A survey of rollback‐recovery protocols in message‐passing systems. ACM Comput Surv 34(3):375–408

    Article  Google Scholar 

  24. Forney GD Jr, Grassl M, Guha S (2007) Convolutional and tail‐biting quantum error‐correcting codes. IEEE Trans Inf Theory 53(3):865–880

    Article  MathSciNet  MATH  Google Scholar 

  25. Gottesman D (1996) A class of quantum error‐correcting codes saturating the quantum hamming bound. Phys Rev A 54(3):1862–1868

    Article  MathSciNet  Google Scholar 

  26. Gottesman D (1997) Stabilizer codes and quantum error correction. Ph D thesis, California Institute of Technology, Pasadena

    Google Scholar 

  27. Gottesman D (1998) A theory of fault‐tolerant quantum computation. Phys Rev A 57(1):127–137

    Article  MathSciNet  Google Scholar 

  28. Gottesman D (1999) Fault‐tolerant quantum computation with higher‐dimensional systems. Chaos, Solitons & Fractals 10(10):1749–1758

    Article  MathSciNet  MATH  Google Scholar 

  29. Gottesman D (2005) Requirements and desiderata for fault‐tolerant quantum computing: Beyond the DiVincenzo criteria. http://www.perimeterinstitute.ca/personal/dgottesman/FTreqs.ppt

  30. Gottesman D, Chuang IL (1999) Demonstrating the viability of universal quantum computation using teleportation and single‐qubit operations. Nature 402:390–393

    Article  Google Scholar 

  31. Grassl M (2002) Algorithmic aspects of quantum error‐correcting codes. In: Brylinski RK, Chen G (eds) Mathematics of quantum computation. CRC, Boca Raton, pp 223–252

    Google Scholar 

  32. Grassl M, Beth T (2000) Cyclic quantum error‐correcting codes and quantum shift registers. Proc Royal Soc London A 456(2003):2689–2706

    Article  MathSciNet  MATH  Google Scholar 

  33. Grassl M, Rötteler M (2006) Non‐catastrophic encoders and encoder inverses for quantum convolutional codes. In: Proceedings 2006 IEEE International Symposium on Information Theory (ISIT 2006), Seattle, pp 1109–1113

    Google Scholar 

  34. Grassl M, Rötteler M (2008) Quantum Goethals‐Preparata codes. In: Proceedings 2008 IEEE International Symposium on Information Theory (ISIT 2008), Toronto, pp 300–304

    Google Scholar 

  35. Grassl M, Beth T, Pellizzari T (1997) Codes for the quantum erasure channel. Phys Rev A 56(1):33–38

    Article  MathSciNet  Google Scholar 

  36. Grassl M, Beth T, Rötteler M (2004) On optimal quantum codes. Int J Quantum Inf 2(1):55–64

    Google Scholar 

  37. Grassl M, Rötteler M, Beth T (2003) Efficient quantum circuits for non-qubit quantum error‐correcting codes. Int J Found Comput Sci 14(5):757–775

    Google Scholar 

  38. Hamming RW (1986) Coding and information theory. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  39. Haroche S, Raimond JM (1996) Quantum computing: Dream or nightmare? Phys Today 49(8):51–52

    Article  Google Scholar 

  40. Kempe J, Regev O, Unger F, de Wolf R (2008) Upper bounds on the noise threshold for fault‐tolerant quantum computing. Preprint arXiv:0802.1464 [quant-ph]

    Google Scholar 

  41. Ketkar A, Klappenecker A, Kumar S, Sarvepalli PK (2006) Nonbinary stabilizer codes over finite fields. IEEE Trans Inf Theory 52(11):4892–4914

    Article  MathSciNet  MATH  Google Scholar 

  42. Kitaev A (1997) Quantum computations: Algorithms and error correction. Russ Math Surv 52(6):1191–1249

    Article  MathSciNet  MATH  Google Scholar 

  43. Knill E (2005) Quantum computing with realistically noisy devices. Nature 434:39–44

    Article  Google Scholar 

  44. Knill E, Laflamme R (1997) Theory of quantum error‐correcting codes. Phys Rev A 55(2):900–911

    Article  MathSciNet  Google Scholar 

  45. Knill E, Laflamme R, Zurek WH (1998) Resilient quantum computation: Error models and thresholds. Proc Royal Soc London Series A, 454:365–384. Preprint quant-ph/9702058

    Google Scholar 

  46. Knill E, Laflamme R, Milburn G (2001) A scheme for efficient quantum computation with linear optics. Nature 409:46–52

    Article  Google Scholar 

  47. Kraus K (1983) States, effects, and operations. Lecture notes in physics, vol 190. Springer, Berlin

    Google Scholar 

  48. Kribs DW, Laflamme R, Poulin D (2005) Unified and generalized approach to quantum error correction. Phys Rev Lett 94(18):180501

    Article  Google Scholar 

  49. Kribs DW, Laflamme R, Poulin D, Lesosky M (2006) Operator quantum error correction. Quantum Inf Comput 6(3–4):382–399

    MathSciNet  MATH  Google Scholar 

  50. Lidar DA, Whaley KB (2003) Decoherence‐free subspaces and subsystems. In: Benatti F, Floreanini R (eds) Irreversible quantum dynamics, Lecture Notes in Physics, vol 622. Springer, Berlin, pp 83–120

    Chapter  Google Scholar 

  51. Lidar DA, Chuang IL, Whaley KB (1998) Decoherence‐free subspaces for quantum computation. Phys Rev Lett 81(12):2594–2597

    Article  Google Scholar 

  52. MacKay DJC, Mitchison G, McFadden PL (2004) Quantum computations: Algorithms and error correction. IEEE Trans Inf Theory 50(10):2315–2330

    Article  MathSciNet  Google Scholar 

  53. MacWilliams FJ, Sloane NJA (1977) The theory of error‐correcting codes.North‐Holland, Amsterdam

    MATH  Google Scholar 

  54. Matsumoto R (2002) Improvement of Ashikhmin–Litsyn–Tsfasman bound for quantum codes. IEEE Trans Inf Theory 48(7):2122–2124

    Article  MATH  Google Scholar 

  55. von Neumann J (1956) Probabilistic logic and the synthesis of reliable organisms from unreliable components. In: Shannon CE, McCarthy J (eds) Automata studies. Princeton University Press, Princeton, pp 43–98

    Google Scholar 

  56. Nielsen MA, Chuang IL (2000) Quantum computation and quantum information.Cambridge University Press, Cambridge

    MATH  Google Scholar 

  57. Ollivier H, Tillich JP (2003) Description of a quantum convolutional code. Phys Rev Lett 91(17):177902

    Article  Google Scholar 

  58. Preskill J (1998) Reliable quantum computers. Proc Royal Soc London A, 454:385–410. Preprint quant-ph/9705031

    Article  MathSciNet  MATH  Google Scholar 

  59. Rains EM, Hardin RH, Shor PW, Sloane NJA (1997) Nonadditive quantum code. Phys Rev Lett 79(5):953–954

    Article  Google Scholar 

  60. Razborov A (2004) An upper bound on the threshold quantum decoherence rate. Quantum Inf Comput 4(3):222–228

    MathSciNet  MATH  Google Scholar 

  61. Reichardt BW (2006) Error‐detection‐based quantum fault tolerance against discrete Pauli noise. Ph D thesis, University of California, Berkeley

    Google Scholar 

  62. Reichardt BW (2006) Fault‐tolerance threshold for a distance‐three quantum code. In: Proceedings of the 2006 International Colloquium on Automata, Languages and Programming (ICALP'06). Lecture Notes in Computer Science, vol 4051. Springer, Berlin, pp 50–61

    Google Scholar 

  63. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423, 623–656, http://cm.bell-labs.com/cm/ms/what/shannonday/paper.html

    MathSciNet  Google Scholar 

  64. Shor PW (1995) Scheme for reducing decoherence in quantum computer memory. Phys Rev A 52(4):R2493–R2496

    Article  Google Scholar 

  65. Shor PW (1996) Fault‐tolerant quantum computation. In: Proceedings of 35th Annual Symposium on Fundamentals of Computer Science (FOCS'96). IEEE Press, Burlington, pp 56–65. Preprint quant-ph/9605011

    Google Scholar 

  66. Steane AM (1996) Error correcting codes in quantum theory. Phys Rev Lett 77(5):793–797

    Article  MathSciNet  MATH  Google Scholar 

  67. Steane AM (1996) Simple quantum error correcting codes. Phys Rev A 54(6):4741–4751

    Article  MathSciNet  Google Scholar 

  68. Steane AM (1997) Active stabilization, quantum computation and quantum state synthesis. Phys Rev Lett 78(11):2252–2255

    Article  Google Scholar 

  69. Wootters WK, Zurek WH (1982) A single quantum cannot be cloned. Nature 299(5886):802–803

    Article  Google Scholar 

  70. Zalka C (1996) Threshold estimate for fault tolerant quantum computation. Preprint quant-ph/9612028

    Google Scholar 

  71. Zanardi P, Rasetti M (1997) Noiseless quantum codes. Phys Rev Lett 79(17):3306–3309

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag

About this entry

Cite this entry

Grassl, M., Rötteler, M. (2012). Quantum Error Correction and Fault Tolerant Quantum Computing. In: Meyers, R. (eds) Computational Complexity. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1800-9_152

Download citation

Publish with us

Policies and ethics