Skip to main content

Quantum Computing with Trapped Ions

  • Reference work entry
Computational Complexity

Article Outline

Glossary

Definition of the Subject

Introduction

Ion Trap Technology

Ions as Carriers of Quantum Information

Laser Cooling and State Initialization

Singleā€Ion Operations

State Detection of Ionic Qubits

Two-Qubit Interaction and Quantum Gates

Decoherence

Quantum Algorithms

Distributed Quantum Information with Trapped Ions

Future Directions

Bibliography

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,500.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ion trap:

Device used for confining charged particles to aĀ small volume of space. There are two types of ion traps: in aĀ Paul trap, the confinement is achieved by using an electric quadrupole radioā€frequency field, while aĀ Penning trap uses aĀ static electric quadrupole field and aĀ static magnetic field. For the right field parameters, the charged particles can be stored in the trapping volume permanently.

Lambā€“Dicke regime:

Describes the conditions for strong confinement of ions. In the Lambā€“Dicke regime, ions are confined to aĀ region smaller than the wavelength of the optical transition of the ion. Another property of ions in this parameter range is that the ion's recoil energy is less than the energy of aĀ single quantum of vibration in the trap. This suppresses spontaneous sideband transitions. The Lambā€“Dicke regime is essential for the reliable operation of laserā€induced quantum gates in an ion-trap quantum computer.

Qubit:

The unit of quantum information processing. AĀ contraction of quantum bit, the term qubit designates quantum system with two quasi-stable states carrying the quantum equivalent of binary information (ā€œ0ā€ or ā€œ1ā€). In an ion-trap quantum computer, two long-lived electronic states are employed as quantum memory. Their wavefunctions are represented here by the symbols \( { |g\rangle } \) and \( { |e\rangle } \). The qubit states are manipulated by means of laser pulses.

Quantum register:

AĀ collection of qubits forms aĀ quantum register. The power of aĀ quantum computer increases exponentially with the sizeĀ N of the quantum register, since in this case \( { 2^N } \) numbers can be processed in parallel. In ion traps, the largest quantum register implemented so far has size \( { N=8 } \).

Normal modes:

The motion of ions in aĀ linear string is strongly coupled due to their Coulomb repulsion. The system can still be described by analogy with aĀ set of independent harmonic oscillators, when collective modes of motion are considered, in which all ions oscillate in phase and at the same frequency. These are called normal modes. AĀ linear string of N ions has N normal modes of axial vibration. Each mode has aĀ characteristic distribution of motional amplitudes for the ions. In the lowest frequency mode, all ions oscillate at the same amplitude, so that the string moves like aĀ rigid body.

Phonon bus:

Since all ions participate in the collective motion, it can be used to transfer quantum information between ions in the string. To this end, each normal mode is considered as aĀ quantum mechanical oscillator, in which quanta of vibrational motion (phonons) can be excited or deā€excited. By coupling their excitation to transitions of the ion-qubit, the phonons serve as aĀ quantum data bus to other ions. Reliable transfer requires that the phonons are restricted to aĀ binary system. The state with no vibrational excitation encodes the qubit \( { |0\rangle } \), one quantum of vibration corresponds to \( { |1\rangle } \).

Rabiā€oscillations:

The term describes the change of state of aĀ two-level atom, induced by the coherent excitation with aĀ laser beam close to resonance.After half aĀ period (phaseĀ Ļ€), the population is completely transferred, after another half period it is returned to the initial distribution again. By choosing suitable phases, amplitudes, detunings and duration of the pulses, the individual qubits may be manipulated in aĀ fully controlled way and quantum gates between different ions may be induced (via the phonon bus).

Coherent superposition:

According to the laws of quantum mechanics, aĀ qubit can be in an arbitrary superposition of the two basis states with complex amplitudesĀ Ī± and Ī², written as \( { \alpha |g\rangle + \beta |e\rangle } \). The relative phase is important, for example, \( { |g\rangle-|e\rangle } \) and \( { |g\rangle+|e\rangle } \) are distinct superposition states. As long as aĀ wellā€defined phase is preserved, the qubit is in aĀ coherent superposition. This is aĀ precondition for quantum information processing.

Decoherence:

Any loss of coherence of aĀ quantum state is called decoherence.There are many sources of decoherence. In an ion-trap quantum processor, they range from spontaneous decay of the qubitā€levels to phase shifts in fluctuating ambient fields. AĀ quantum computation can only proceed reliably while decoherence is negligible. Quantum error correction is aĀ way to counteract decoherence.

Entanglement:

Entanglement is one of the most important properties of quantum systems and has no classical analogue. AĀ composite system, for example two qubits, is entangled if the states of the individual particles cannot be separated and regarded as independent. Instead, there are strong non-local links between the components, resulting in quantum correlations and state changes of one partner upon measurement of the other. Entangled states have many applications, from spectroscopy to quantum networking. Up to eight ions have been entangled in aĀ deterministic way.

Quantum network:

AĀ system of either local or distant nodes performing quantum calculations and exchanging results via transport of ions or via photon links. Setting up the latter requires aĀ controlled exchange of quantum data between ions and photons, providing flying qubits. The goal is distributed entanglement, for example to transfer qubits over long distances via teleportation and eventually to perform distributed quantum computation.

Bibliography

Primary Literature

  1. Feynman RP (1960) There's plenty of room at the bottom.Eng Sci 23:22ā€“36

    Google ScholarĀ 

  2. Feynman RP (1982) Simulating physics with computers.Int JĀ Theor Phys 21:467ā€“488

    MathSciNetĀ  Google ScholarĀ 

  3. Benioff P (1982) Quantumā€mechanical models of turingā€machines that dissipate no energy.Phys Rev Lett 48:1581ā€“1585

    MathSciNetĀ  Google ScholarĀ 

  4. Cirac JI, Zoller P (1995) Quantum computations with cold trapped ions.Phys Rev Lett 74:4091ā€“4094

    Google ScholarĀ 

  5. DiVincenzo DP (2000) The physical implementation of quantum computation. Fortschritte Phys-Prog Phys 48:771ā€“783

    MATHĀ  Google ScholarĀ 

  6. Ghosh PK (1995) Ion Traps.Clarendon, Oxford

    Google ScholarĀ 

  7. Paul W (1990) Electromagnetic traps for charged and neutral particles.Rev Mod Phys 62:531ā€“540

    Google ScholarĀ 

  8. Paul W, Steinwedel H (1953) Ein neues Massenspektrometer ohne Magnetfeld.Z Naturforsch 8:448ā€“450

    Google ScholarĀ 

  9. Waki I, Kassner S, Birkl G etĀ al (1992) Observation of ordered structures of laserā€cooled ions in aĀ quadrupole storage ring.Phys Rev Lett 68:2007ā€“2010

    Google ScholarĀ 

  10. Nagerl HC, Bechter W, Eschner J etĀ al (1998) Ion strings for quantum gates.Appl Phys Bā€‘Lasers Opt 66:603ā€“608

    Google ScholarĀ 

  11. Raizen MG, Gilligan JM, Bergquist JC etĀ al (1992) Ionicā€crystals in aĀ linear paul trap.Phys Rev AĀ 45:6493ā€“6501

    Google ScholarĀ 

  12. Drewsen M, Brodersen C, Hornekaer L et al (1998) Large ion crystals in aĀ linear Paul trap. Phys Rev Lett 81:2827ā€“2830

    Google ScholarĀ 

  13. James DFV (1998) Quantum dynamics of cold trapped ions with application to quantum computation.Appl Phys Bā€‘Lasers Opt 66:181ā€“190

    Google ScholarĀ 

  14. Hughes RJ, James DFV, Gomez JJ etĀ al (1998) The Los Alamos trapped ion quantum computer experiment.Fortschritte Phys-Prog Phys 46:329ā€“361

    Google ScholarĀ 

  15. Berkeland DJ, Miller JD, Bergquist JC etĀ al (1998) Minimization of ion micromotion in aĀ Paul trap.JĀ Appl Phys 83:5025ā€“5033

    Google ScholarĀ 

  16. Hoffges JT, Baldauf HW, Eichler T etĀ al (1997) Heterodyne measurement of the fluorescent radiation of aĀ single trapped ion.Opt Commun 133:170ā€“174

    Google ScholarĀ 

  17. Dehmelt H (1967) Radiofrequency Spectroscopy of Stored Ions.Adv At Mol Phys 3:53

    Google ScholarĀ 

  18. Straubel H (1955) Zum Ɩltrƶpfchenversuch von Millikan. Naturwissenschaften 42:506ā€“507

    Google ScholarĀ 

  19. Brewer RG, Devoe RG, Kallenbach R (1992) Planar ion microtraps.Phys Rev A 46:R6781ā€“R6784

    Google ScholarĀ 

  20. Schrama CA, Peik E, Smith WW etĀ al (1993) Novel miniature ion traps.Opt Commun 101:32ā€“36

    Google ScholarĀ 

  21. Jefferts SR, Monroe C, Bell EW etĀ al (1995) Coaxialā€resonatorā€driven rf (paul) trap for strong confinement.Phys Rev A 51:3112ā€“3116

    Google ScholarĀ 

  22. Monroe C, Meekhof DM, King BE etĀ al (1995) Demonstration of aĀ fundamental quantum logic gate.Phys Rev Lett 75:4714ā€“4717

    MathSciNetĀ  MATHĀ  Google ScholarĀ 

  23. Turchette QA, Wood CS, King BE etĀ al (1998) Deterministic entanglement of two trapped ions.Phys Rev Lett 81:3631ā€“3634

    Google ScholarĀ 

  24. Cirac JL, Zoller P (2000) AĀ scalable quantum computer with ions in an array of microtraps.Nature 404:579ā€“581

    Google ScholarĀ 

  25. Kielpinski D, Monroe C, Wineland DJ (2002) Architecture for aĀ large-scale ion-trap quantum computer.Nature 417:709ā€“711

    Google ScholarĀ 

  26. Rowe MA, Ben-Kish A, Demarco B etĀ al (2002) Transport of quantum states and separation of ions in aĀ dual RF ion trap.Quantum Inform Comput 2:257ā€“271

    MATHĀ  Google ScholarĀ 

  27. Hensinger WK, Olmschenk S, Stick D etĀ al (2006) Tā€‘junction ion trap array for twoā€dimensional ion shuttling, storage, and manipulation.Appl Phys Lett 88:034101

    Google ScholarĀ 

  28. Madsen MJ, Hensinger WK, Stick D etĀ al (2004) Planar ion trap geometry for microfabrication.Appl Phys Bā€‘Lasers Opt 78:639ā€“651

    Google ScholarĀ 

  29. Brownnutt M, Wilpers G, Gill P etĀ al (2006) Monolithic microfabricated ion trap chip design for scaleable quantum processors.New JĀ Phys 8:232

    Google ScholarĀ 

  30. Stick D, Hensinger WK, Olmschenk S etĀ al (2006) Ion trap in aĀ semiconductor chip.Nat Phys 2:36ā€“39

    Google ScholarĀ 

  31. Seidelin S, Chiaverini J, Reichle R etĀ al (2006) Microfabricated surfaceā€electrode ion trap for scalable quantum information processing.Phys Rev Lett 96:253003

    Google ScholarĀ 

  32. Chiaverini J, Blakestad RB, Britton J etĀ al (2005) Surfaceā€electrode architecture for ion-trap quantum information processing.Quantum Inform Comput 5:419ā€“439

    MathSciNetĀ  MATHĀ  Google ScholarĀ 

  33. Kim J, Pau S, Ma Z etĀ al (2005) System design for large-scale ion trap quantum information processor.Quantum Inform Comput 5:515ā€“537

    MATHĀ  Google ScholarĀ 

  34. Mitchell TB, Bollinger JJ, Dubin DHE etĀ al (1998) Direct observations of structural phase transitions in planar crystallized ion plasmas.Science 282:1290ā€“1293

    Google ScholarĀ 

  35. Porras D, Cirac JI (2006) Phonon superfluids in sets of trapped ions.Found Phys 36:465ā€“476

    MATHĀ  Google ScholarĀ 

  36. Castrejonā€Pita JR, Ohadi H, Crick DR etĀ al (2007) Novel designs for Penning ion traps.JĀ Mod Opt 54:1581ā€“1594

    Google ScholarĀ 

  37. Crick DR, Ohadi H, Bhatti I etĀ al (2008) Two-ion Coulomb crystals of Ca+ in aĀ Penning trap.Opt Express 16:2351ā€“2362

    Google ScholarĀ 

  38. Ciaramicoli G, Marzoli I, Tombesi P (2003) Scalable quantum processor with trapped electrons.Phys Rev Lett 91:017901

    Google ScholarĀ 

  39. Langer C, Ozeri R, Jost JD etĀ al (2005) Long-lived qubit memory using atomic ions.Phys Rev Lett 95:060502

    Google ScholarĀ 

  40. Nagerl HC, Roos C, Rohde H etĀ al (2000) Addressing and cooling of single ions in Paul traps.Fortschritte Phys-Prog Phys 48:623ā€“636

    Google ScholarĀ 

  41. Lucas DM, Donald CJS, Home JP etĀ al (2003) Oxford ion-trap quantum computing project.Philos Trans R Soc Lond Ser A-Math Phys Eng Sci 361:1401ā€“1408

    Google ScholarĀ 

  42. Benhelm J, Kirchmair G, Rapol U etĀ al (2007) Measurement of the hyperfine structure of the S-1/2-D-5/2 transition in Ca-43\( { ^{+} } \).Phys Rev A 75:032506

    Google ScholarĀ 

  43. Deslauriers L, Haijan PC, Lee PJ etĀ al (2004) Zero-point cooling and low heating of trapped Cd-111\( { ^{+} } \) ions. Phys Rev A 70:043408

    Google ScholarĀ 

  44. Balzer C, Braun A, Hannemann T etĀ al (2006) Electrodynamically trapped Yb+ ions for quantum information processing.Phys Rev A 73:041407

    Google ScholarĀ 

  45. Olmschenk S, Younge KC, Moehring DL etĀ al (2007) Manipulation and detection of aĀ trapped Yb+ hyperfine qubit.Phys Rev A 76:052314

    Google ScholarĀ 

  46. Schaetz T, Friedenauer A, Schmitz H etĀ al (2007) Towards (scalable) quantum simulations in ion traps.JĀ Mod Opt 54:2317ā€“2325

    Google ScholarĀ 

  47. Berkeland DJ (2002) Linear Paul trap for strontium ions.Rev Sci Instrum 73:2856ā€“2860

    Google ScholarĀ 

  48. Brown KR, Clark RJ, Labaziewicz J etĀ al (2007) Loading and characterization of aĀ printedā€circuitā€board atomic ion trap.Phys Rev A 75:015401

    Google ScholarĀ 

  49. Brownnutt M, Letchumanan V, Wilpers G etĀ al (2007) Controlled photoionization loading of Sr-88\( { ^{+} } \) for precision ion-trap experiments.Appl Phys Bā€‘Lasers Opt 87:411ā€“415

    Google ScholarĀ 

  50. Letchumanan V, Wilpers G, Brownnutt M etĀ al (2007) Zero-point cooling and heatingā€rate measurements of aĀ single Sr-88\( { ^{+} } \) ion.Phys Rev A 75:063425

    Google ScholarĀ 

  51. Kjaergaard N, Hornekaer L, Thommesen AM etĀ al (2000) Isotope selective loading of an ion trap using resonanceā€enhanced twoā€photon ionization.Appl Phys Bā€‘Lasers Opt 71:207ā€“210

    Google ScholarĀ 

  52. Gulde S, Rotter D, Barton P etĀ al (2001) Simple and efficient photoā€ionization loading of ions for precision ionā€trapping experiments.Appl Phys Bā€‘Lasers Opt 73:861ā€“863

    Google ScholarĀ 

  53. Deslauriers L, Acton M, Blinov BB etĀ al (2006) Efficient photoionization loading of trapped ions with ultrafast pulses.Phys Rev A 74:063421

    Google ScholarĀ 

  54. Lucas DM, Ramos A, Home JP etĀ al (2004) Isotopeā€selective photoionization for calcium ion trapping.Phys Rev A 69:012711

    Google ScholarĀ 

  55. Happer W (1972) Opticalā€pumping.Rev Mod Phys 44:169

    Google ScholarĀ 

  56. Wineland DJ, Drullinger RE, Walls FL (1978) Radiationā€pressure cooling of bound resonant absorbers.Phys Rev Lett 40:1639ā€“1642

    Google ScholarĀ 

  57. Neuhauser W, Hohenstatt M, Toschek P etĀ al (1978) Opticalā€sideband cooling of visible atom cloud confined in parabolic well.Phys Rev Lett 41:233ā€“236

    Google ScholarĀ 

  58. Wineland DJ, Itano WM (1979) Laser cooling of atoms.Phys Rev A 20:1521ā€“1540

    Google ScholarĀ 

  59. Stenholm S (1986) The semiclassical theory of laser cooling.Rev Mod Phys 58:699ā€“739

    Google ScholarĀ 

  60. Diedrich F, Bergquist JC, Itano WM etĀ al (1989) Laser cooling to the zero-point energy of motion.Phys Rev Lett 62:403ā€“406

    Google ScholarĀ 

  61. Monroe C, Meekhof DM, King BE etĀ al (1995) Resolvedā€side-band raman cooling of aĀ bound atom to the 3d zero-point energy.Phys Rev Lett 75:4011ā€“4014

    MathSciNetĀ  Google ScholarĀ 

  62. Roos C, Zeiger T, Rohde H etĀ al (1999) Quantum state engineering on an optical transition and decoherence in aĀ Paul trap.Phys Rev Lett 83:4713ā€“4716

    Google ScholarĀ 

  63. Kielpinski D, King BE, Myatt CJ etĀ al (2000) Sympathetic cooling of trapped ions for quantum logic.Phys Rev A 61:032310

    Google ScholarĀ 

  64. Schmidtā€Kaler F, Roos C, Nagerl HC etĀ al (2000) Ground state cooling, quantum state engineering and study of decoherence of ions in Paul traps.JĀ Mod Opt 47:2573ā€“2582

    Google ScholarĀ 

  65. Rohde H, Gulde ST, Roos CF etĀ al (2001) Sympathetic groundā€state cooling and coherent manipulation with two-ion crystals.JĀ Opt Bā€‘Quantum Semicl Opt 3:S34ā€“S41

    Google ScholarĀ 

  66. Barrett MD, DeMarco B, Schaetz T etĀ al (2003) Sympathetic cooling of Be-9\( { ^{+} } \) and Mg-24\( { ^{+} } \) for quantum logic.Phys Rev A 68:042302

    Google ScholarĀ 

  67. King BE, Wood CS, Myatt CJ etĀ al (1998) Cooling the collective motion of trapped ions to initialize aĀ quantum register.Phys Rev Lett 81:1525ā€“1528

    Google ScholarĀ 

  68. Mintert F, Wunderlich C (2001) Ion-trap quantum logic using longā€wavelength radiation.Phys Rev Lett 87:257904

    Google ScholarĀ 

  69. Nagourney W, Sandberg J, Dehmelt H (1986) Shelved optical electron amplifierĀ ā€“ observation of quantum jumps.Phys Rev Lett 56:2797ā€“2799

    Google ScholarĀ 

  70. Wineland DJ, Bergquist JC, Itano WM etĀ al (1980) Doubleā€resonance and opticalā€pumping experiments on electromagnetically confined, laserā€cooled ions.Opt Lett 5:245ā€“247

    Google ScholarĀ 

  71. Blatt R, Zoller P (1988) Quantum jumps in atomic systems.Eur JĀ Phys 9:250ā€“256

    Google ScholarĀ 

  72. Bergquist JC, Hulet RG, Itano WM etĀ al (1986) Observation of quantum jumps in aĀ single atom.Phys Rev Lett 57:1699ā€“1702

    Google ScholarĀ 

  73. Vogel K, Risken H (1989) Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase.Phys Rev A 40:2847ā€“2849

    Google ScholarĀ 

  74. Roos CF, Lancaster GPT, Riebe M etĀ al (2004) Bell states of atoms with ultralong lifetimes and their tomographic state analysis.Phys Rev Lett 92:220402

    Google ScholarĀ 

  75. Gulde S, Riebe M, Lancaster GPT etĀ al (2003) Implementation of the Deutsch-Jozsa algorithm on an ion-trap quantum computer.Nature 421:48ā€“50

    Google ScholarĀ 

  76. Schmidtā€Kaler F, Haffner H, Riebe M etĀ al (2003) Realization of the Ciracā€Zoller controlledā€NOT quantum gate.Nature 422:408ā€“411

    Google ScholarĀ 

  77. Childs AM, Chuang IL (2001) Universal quantum computation with two-level trapped ions.Phys Rev A 6301:012306

    Google ScholarĀ 

  78. Milburn GJ (1999) Simulating nonlinear spin models in an ion trap. arXiv:quant-ph/9908037v1

  79. Sorensen A, Molmer K (1999) Quantum computation with ions in thermal motion. Phys Rev Lett 82:1971ā€“1974

    Google ScholarĀ 

  80. Molmer K, Sorensen A (1999) Multiparticle entanglement of hot trapped ions. Phys Rev Lett 82:1835ā€“1838

    Google ScholarĀ 

  81. Solano E, deĀ Matos RL, Zagury N (1999) Deterministic Bell states and measurement of the motional state of two trapped ions.Phys Rev A 59:R2539ā€“R2543

    Google ScholarĀ 

  82. Sorensen A, Molmer K (2000) Entanglement and quantum computation with ions in thermal motion.Phys Rev A 6202:022311

    Google ScholarĀ 

  83. Milburn GJ, Schneider S, James DFV (2000) Ion trap quantum computing with warm ions.Fortschritte PhysĀ ā€“Ā Prog Phys 48:801ā€“810

    Google ScholarĀ 

  84. Sackett CA, Kielpinski D, King BE etĀ al (2000) Experimental entanglement of four particles.Nature 404:256ā€“259

    Google ScholarĀ 

  85. Kielpinski D, Meyer V, Rowe MA etĀ al (2001) AĀ decoherenceā€free quantum memory using trapped ions.Science 291:1013ā€“1015

    Google ScholarĀ 

  86. Haljan PC, Brickman KA, Deslauriers L etĀ al (2005) Spinā€dependent forces on trapped ions for phaseā€stable quantum gates and entangled states of spin and motion.Phys Rev Lett 94:153602

    Google ScholarĀ 

  87. Haljan PC, Lee PJ, Brickman KA etĀ al (2005) Entanglement of trappedā€ion clock states.Phys Rev A 72:062316

    Google ScholarĀ 

  88. Leibfried D, DeMarco B, Meyer V etĀ al (2003) Experimental demonstration of aĀ robust, highā€fidelity geometric two ion-qubit phase gate.Nature 422:412ā€“415

    Google ScholarĀ 

  89. McDonnell MJ, Home JP, Lucas DM etĀ al (2007) Long-lived mesoscopic entanglement outside the Lamb-Dicke regime.Phys Rev Lett 98:063603

    Google ScholarĀ 

  90. Home JP, McDonnell MJ, Lucas DM etĀ al (2006) Deterministic entanglement and tomography of ion-spin qubits.New JĀ Phys 8:188

    Google ScholarĀ 

  91. Monroe C, Leibfried D, King BE etĀ al (1997) Simplified quantum logic with trapped ions.Phys Rev A 55:R2489ā€“R2491

    Google ScholarĀ 

  92. DeMarco B, Ben-Kish A, Leibfried D etĀ al (2002) Experimental demonstration of aĀ controlledā€NOT waveā€packet gate.Phys Rev Lett 89:267901

    Google ScholarĀ 

  93. Garciaā€Ripoll JJ, Zoller P, Cirac JI (2003) Speed optimized two-qubit gates with laser coherent control techniques for ion trap quantum computing.Phys Rev Lett 91:157901

    Google ScholarĀ 

  94. Duan LM, Blinov BB, Moehring DL etĀ al (2004) Scalable trapped ion quantum computation with aĀ probabilistic ionā€photon mapping.Quantum Inform Comput 4:165ā€“173

    MathSciNetĀ  MATHĀ  Google ScholarĀ 

  95. Garciaā€Ripoll JJ, Zoller P, Cirac JI (2005) Quantum information processing with cold atoms and trapped ions.JĀ Phys BĀ ā€“Ā At Mol Opt Phys 38:S567ā€“S578

    Google ScholarĀ 

  96. Zhu SL, Monroe C, Duan LM (2006) Trapped ion quantum computation with transverse phonon modes.Phys Rev Lett 97:050505

    Google ScholarĀ 

  97. Leibfried D, Knill E, Seidelin S etĀ al (2005) Creation of aĀ six-atom ā€˜Schroedinger catā€™ state.Nature 438:639ā€“642

    Google ScholarĀ 

  98. Barrett MD, Chiaverini J, Schaetz T etĀ al (2004) Deterministic quantum teleportation of atomic qubits.Nature 429:737ā€“739

    Google ScholarĀ 

  99. Riebe M, Haffner H, Roos CF etĀ al (2004) Deterministic quantum teleportation with atoms.Nature 429:734ā€“737

    Google ScholarĀ 

  100. Chiaverini J, Leibfried D, Schaetz T etĀ al (2004) Realization of quantum error correction.Nature 432:602ā€“605

    Google ScholarĀ 

  101. Fisk PTH, Sellars MJ, Lawn MA etĀ al (1995) Very high-q microwave spectroscopy on trapped yb-171\( { ^{+} } \) ionsĀ ā€“ application as aĀ frequency standard.IEEE Trans Instrum Meas 44:113ā€“116

    Google ScholarĀ 

  102. Meekhof DM, Monroe C, King BE etĀ al (1996) Generation of nonclassical motional states of aĀ trapped atom.Phys Rev Lett 76:1796ā€“1799

    Google ScholarĀ 

  103. Palma GM, Suominen KA, Ekert AK (1996) Quantum computers and dissipation. Proc R Soc London Ser A-Math Phys Eng Sci 452:567ā€“584

    Google ScholarĀ 

  104. Barenco A, Berthiaume A, Deutsch D etĀ al (1997) Stabilization of quantum computations by symmetrization.SIAM JĀ Comput 26:1541ā€“1557

    MathSciNetĀ  MATHĀ  Google ScholarĀ 

  105. Zanardi P, Rasetti M (1997) Noiseless quantum codes.Phys Rev Lett 79:3306ā€“3309

    Google ScholarĀ 

  106. Turchette QA, Kielpinski D, King BE etĀ al (2000) Heating of trapped ions from the quantum ground state.Phys Rev A 6106:063418

    Google ScholarĀ 

  107. Deslauriers L, Olmschenk S, Stick D etĀ al (2006) Scaling and suppression of anomalous heating in ion traps.Phys Rev Lett 97:103007

    Google ScholarĀ 

  108. Labaziewicz J, Richerme P, Brown KR etĀ al (2007) Compact, filtered diode laser system for precision spectroscopy.Opt Lett 32:572ā€“574

    Google ScholarĀ 

  109. Turchette QA, Myatt CJ, King BE etĀ al (2000) Decoherence and decay of motional quantum states of aĀ trapped atom coupled to engineered reservoirs.Phys Rev A 62:053807

    Google ScholarĀ 

  110. Schmidtā€Kaler F, Gulde S, Riebe M etĀ al (2003) The coherence of qubits based on single Ca+ ions.JĀ Phys B-At Mol Opt Phys 36:623ā€“636

    Google ScholarĀ 

  111. Lucas DM, Keitch BC, Home JP etĀ al (2007) AĀ long-lived memory qubit on aĀ lowā€decoherence quantum bus.arXiv:0710.4421v1 [quant-ph]

  112. Steane AM (2002).Overhead and noise threshold of faultā€tolerant quantum error correction.quant-ph/0207119

    Google ScholarĀ 

  113. Barenco A, Bennett CH, Cleve R etĀ al (1995) Elementary gates for quantum computation.Phys Rev A 52:3457ā€“3467

    Google ScholarĀ 

  114. Schmidtā€Kaler F, Haffner H, Gulde S etĀ al (2003) How to realize aĀ universal quantum gate with trapped ions.Appl Phys Bā€‘Lasers Opt 77:789ā€“796

    Google ScholarĀ 

  115. Deutsch D (1985) Quantumā€theory, the churchā€turing principle and the universal quantum computer.Proc R Soc London Ser A-Math Phys Eng Sci 400:97ā€“117

    Google ScholarĀ 

  116. Bennett CH, Brassard G, Crepeau C etĀ al (1993) Teleporting an unknown quantum state via dual classical and einsteinā€podolskyā€rosen channels.Phys Rev Lett 70:1895ā€“1899

    MathSciNetĀ  MATHĀ  Google ScholarĀ 

  117. Shor PW (1994) Algorithms for quantum computationĀ ā€“ discrete logarithms and factoring.In: Goldwasser S (ed) Proceedings of the 35th Annual Symposium on Foundations of Computer Science, Santa Fe. IEEE Computer Society Press, Washington, ppĀ 124ā€“134

    Google ScholarĀ 

  118. Chiaverini J, Britton J, Leibfried D etĀ al (2005) Implementation of the semiclassical quantum Fourier transform in aĀ scalable system.Science 308:997ā€“1000

    MathSciNetĀ  MATHĀ  Google ScholarĀ 

  119. Grover LK (1997) Quantum mechanics helps in searching for aĀ needle in aĀ haystack.Phys Rev Lett 79:325ā€“328

    Google ScholarĀ 

  120. Brickman KA, Haljan PC, Lee PJ etĀ al (2005) Implementation of Grover's quantum search algorithm in aĀ scalable system.Phys Rev A 72:050306

    Google ScholarĀ 

  121. Bennett CH, DiVincenzo DP (2000) Quantum information and computation. Nature 404:247ā€“255

    Google ScholarĀ 

  122. Leibfried D, Barrett MD, Schaetz T etĀ al (2004) Toward Heisenbergā€limited spectroscopy with multiparticle entangled states.Science 304:1476ā€“1478

    Google ScholarĀ 

  123. Roos CF, Riebe M, Haffner H etĀ al (2004) Control and measurement of three-qubit entangled states.Science 304:1478ā€“1480

    Google ScholarĀ 

  124. Haffner H, Hansel W, Roos CF etĀ al (2005) Scalable multiparticle entanglement of trapped ions.Nature 438:643ā€“646

    Google ScholarĀ 

  125. Monroe C (2002) Quantum information processing with atoms and photons. Nature 416:238ā€“246

    Google ScholarĀ 

  126. Blinov BB, Moehring DL, Duan LM etĀ al (2004) Observation of entanglement between aĀ single trapped atom and aĀ single photon.Nature 428:153ā€“157

    Google ScholarĀ 

  127. Moehring DL, Maunz P, Olmschenk S etĀ al (2007) Entanglement of singleā€atom quantum bits at aĀ distance.Nature 449:68ā€“71

    Google ScholarĀ 

  128. Guthƶhrlein GR, Keller M, Hayasaka K etĀ al (2001) AĀ single ion as aĀ nanoscopic probe of an optical field.Nature 414:49ā€“51

    Google ScholarĀ 

  129. Mundt AB, Kreuter A, Becher C et al (2002) Coupling aĀ single atomic quantum bit to aĀ high finesse optical cavity. Phys Rev Lett 89:103001

    Google ScholarĀ 

  130. Cirac JI, Zoller P, Kimble HJ etĀ al (1997) Quantum state transfer and entanglement distribution among distant nodes in aĀ quantum network.Phys Rev Lett 78:3221ā€“3224

    Google ScholarĀ 

  131. Keller M, Lange B, Hayasaka K etĀ al (2004) Continuous generation of single photons with controlled waveform in an ion-trap cavity system.Nature 431:1075ā€“1078

    Google ScholarĀ 

  132. Steane AM (2007) How to build aĀ 300 bit, 1 gigaā€operation quantum computer.Quantum Inform Comput 7:171ā€“183

    MathSciNetĀ  MATHĀ  Google ScholarĀ 

  133. Porras D, Cirac JI (2004) Effective quantum spin systems with trapped ions. Phys Rev Lett 92:207901

    Google ScholarĀ 

  134. Friedenauer A, Schmitz H, Glueckert JT et al (2008) Simulating aĀ quantum magnet with trapped ions. Nat Phys 4:757-761

    Google ScholarĀ 

  135. Leibfried D, DeMarco B, Meyer V etĀ al (2002) Trappedā€ion quantum simulator: Experimental application to nonlinear interferometers.Phys Rev Lett 89:247901

    Google ScholarĀ 

  136. Schutzhold R, Uhlmann M (2007) Analogue of cosmological particle creation in an ion trap.Phys Rev Lett 99:201301

    Google ScholarĀ 

  137. Schmidt PO, Rosenband T, Langer C etĀ al (2005) Spectroscopy using quantum logic.Science 309:749ā€“752

    Google ScholarĀ 

Books and Reviews

  1. Wineland DJ, Monroe C, Itano WM etĀ al (1998) Trappedā€ion quantum simulator.Phys Scr T76:147ā€“151

    Google ScholarĀ 

  2. Ekert A, Jozsa R (1996) Quantum computation and Shor's factoring algorithm. Rev Mod Phys 68:733ā€“753

    MathSciNetĀ  Google ScholarĀ 

  3. Steane A (1997) The ion trap quantum information processor.Appl Phys BĀ ā€“Ā Lasers Opt 64:623ā€“642

    Google ScholarĀ 

  4. Wineland DJ, Barrett M, Britton J etĀ al (2003) Quantum information processing with trapped ions.Philos Trans R Soc Lond Ser A-Math Phys Eng Sci 361:1349ā€“1361

    Google ScholarĀ 

  5. Leibfried D, Blatt R, Monroe C etĀ al (2003) Quantum dynamics of single trapped ions.Rev Mod Phys 75:281ā€“324

    Google ScholarĀ 

  6. Steane A (1998) Quantum computing.Rep Prog Phys 61:117ā€“173

    MathSciNetĀ  Google ScholarĀ 

  7. Wineland DJ, Monroe C, Itano WM etĀ al (1998) Experimental issues in coherent quantumā€state manipulation of trapped atomic ions.JĀ Res Natl Inst Stand Technol 103:259ā€“328

    Google ScholarĀ 

  8. Blatt R, Wineland D (2008) Entangled states of trapped atomic ions. Nature 453:1008ā€“1015

    Google ScholarĀ 

  9. HƤffner H, Roos CF, Blatt R (2008) Quantum computing with trapped ions. Phys Rep 469:155ā€“204

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2012 Springer-Verlag

About this entry

Cite this entry

Lange, W. (2012). Quantum Computing with Trapped Ions . In: Meyers, R. (eds) Computational Complexity. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1800-9_149

Download citation

Publish with us

Policies and ethics