Computational Complexity

2012 Edition
| Editors: Robert A. Meyers (Editor-in-Chief)

Quantum Algorithms and Complexity for Continuous Problems

  • Anargyros Papageorgiou
  • Joseph F. Traub
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-1800-9_145

Article Outline

Glossary

Definition of the Subject

Introduction

Overview of Quantum Algorithms

Integration

Path Integration

Feynman–Kac Path Integration

Eigenvalue Approximation

Qubit Complexity

Approximation

Elliptic Partial Differential Equations

Ordinary Differential Equations

Gradient Estimation

Simulation of Quantum Systems on Quantum Computers

Future Directions

Acknowledgments

Bibliography

Keywords

Covariance 
This is a preview of subscription content, log in to check access

Notes

Acknowledgments

We are grateful to Erich Novak, University of Jena, and Henryk Woźniakowski,Columbia University and University of Warsaw, for their very helpful comments.We thank Jason Petras, Columbia University, for checking the complexityestimates appearing in the tables.

Bibliography

  1. 1.
    Abrams DS, Lloyd S (1997)Simulation of Many-Body Fermi Systems on a Universal Quantum Computer.Phys Rev Lett 79(13):2586–2589; http://arXiv.org/quant-ph/9703054 CrossRefGoogle Scholar
  2. 2.
    Abrams DS, Lloyd S (1999)Quantum Algorithm Providing Exponential Speed Increase forFinding Eigenvalues and Eigenvectors.Phys Rev Lett 83:5162–5165CrossRefGoogle Scholar
  3. 3.
    Abrams DS, Williams CP (1999)Fast quantum algorithms for numerical integrals andstochastic processes. http://arXiv.org/quant-ph/9908083
  4. 4.
    Bakhvalov NS (1977)Numerical Methods. Mir Publishers, MoscowGoogle Scholar
  5. 5.
    Babuska I, Osborn J (1991)Eigenvalue Problems. In: Ciarlet PG, Lions JL (eds) Handbook of Numerical Analysis, vol II.North-Holland, Amsterdam, pp 641–787Google Scholar
  6. 6.
    Beals R, Buhrman H, Cleve R, Mosca R, de Wolf R (1998)Quantum lower bounds by polynomials. Proceedings FOCS'98, pp 352–361.http://arXiv.org/quant-ph/9802049
  7. 7.
    Bennett CH, Bernstein E, Brassard G, Vazirani U (1997)Strengths and weaknesses of quantum computing.SIAM J Comput 26(5):1510–1523MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Bernstein E, Vazirani U (1997)Quantum complexity theory.SIAM J Comput 26(5):1411–1473MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Berry DW, Ahokas G, Cleve R, Sanders BC (2007)Efficient quantum algorithms for simulating sparse Hamiltonians.Commun Math Phys 270(2):359–371; http://arXiv.org/quant-ph/0508139 MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Bessen AJ (2007)On the complexity of classical and quantum algorithms fornumerical problems in quantum mechanics. Ph D thesis. Department ofComputer Science, Columbia UniversityGoogle Scholar
  11. 11.
    Boghosian BM, Taylor W (1998)Simulating quantum mechanics on a quantum computer. Physica D 120:30–42 http://arXiv.org/quant-ph/9701019 MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Brassard G, Hoyer P, Mosca M, Tapp A (2002)Quantum Amplitude Amplification and Estimation.Contemporary Mathematics, vol 305. Am Math Soc, Providence, pp 53–74. http://arXiv.org/quant-ph/0005055 Google Scholar
  13. 13.
    Brown KR, Clark RJ, Chuang IL (2006)Limitations of Quantum Simulation Examined by Simulating a Pairing Hamiltonianusing Magnetic Resonance.Phys Rev Lett 97(5):050504; http://arXiv.org/quant-ph/0601021 CrossRefGoogle Scholar
  14. 14.
    Cameron RH (1951)A Simpson's rule for the numerical evaluation of Wiener'sintegrals in function space.Duke Math J 8:111–130Google Scholar
  15. 15.
    Chen Z, Yepez J, Cory DG (2006)Simulation of the Burgers equation by NMR quantum information processing.Phys Rev A 74:042321; http://arXiv.org/quant-ph/0410198 Google Scholar
  16. 16.
    Chorin AJ (1973)Accurate evaluation of Wiener integrals.Math Comp 27:1–15MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Cleve R, Ekert A, Macchiavello C, Mosca M (1996)Quantum Algorithms Revisited.Proc R Soc Lond A 454(1969):339–354MathSciNetGoogle Scholar
  18. 18.
    Collatz L (1960)The Numerical Treatment of Differential Equations.Springer, BerlinMATHCrossRefGoogle Scholar
  19. 19.
    Courant C, Hilbert D (1989)Methods of Mathematical Physics, vol I.Wiley Classics Library. Wiley-Interscience, New YorkGoogle Scholar
  20. 20.
    Curbera F (2000)Delayed curse of dimension for Gaussian integration.J Complex 16(2):474–506MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Dawson CM, Eisert J, Osborne TJ (2007)Unifying variational methods for simulating quantum many-body systems.http://arxiv.org/abs/0705.3456v1
  22. 22.
    Demmel JW (1997)Applied Numerical Linear Algebra. SIAM, PhiladelphiaMATHCrossRefGoogle Scholar
  23. 23.
    Egorov AD, Sobolevsky PI, Yanovich LA (1993)Functional Integrals: Approximate Evaluation and Applications.Kluwer, DordrechtGoogle Scholar
  24. 24.
    Feynman RP (1982)Simulating physics with computers.Int J Theor Phys 21:476MathSciNetCrossRefGoogle Scholar
  25. 25.
    Forsythe GE, Wasow WR (2004)Finite-Difference Methods for Partial Differential Equations.Dover, New YorkMATHGoogle Scholar
  26. 26.
    Grover L (1997)Quantum mechanics helps in searching for a needlein a haystack. Phys Rev Lett 79(2):325–328; http://arXiv.org/quant-ph/9706033 CrossRefGoogle Scholar
  27. 27.
    Heinrich S (2002)Quantum Summation with an Application to Integration.J Complex 18(1):1–50; http://arXiv.org/quant-ph/0105116 MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Heinrich S (2003)From Monte Carlo to Quantum Computation. In: Entacher K, Schmid WC, Uhl A (eds)Proceedings of the 3rd IMACS Seminar on Monte Carlo MethodsMCM2001, Salzburg. Special Issue of Math Comput Simul 62:219–230MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Heinrich S (2003)Quantum integration in Sobolev spaces.J Complex 19:19–42MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Heinrich S (2004)Quantum Approximation II. Sobolev Embeddings.J Complex 20:27–45; http://arXiv.org/quant-ph/0305031 MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Heinrich S (2006)The randomized complexity of elliptic PDE.J Complex 22(2):220–249MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Heinrich S (2006)The quantum query complexity of elliptic PDE.J Complex 22(5):691–725MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Heinrich S, Milla B (2007)The randomized complexity of initial value problems.Talk presented at First Joint International Meeting between the AmericanMathematical Society and the Polish Mathematical Society, Warsaw, PolandGoogle Scholar
  34. 34.
    Heinrich S, Novak E (2002) Optimal summation by deterministic, randomized and quantumalgorithms. In: Fang KT, Hickernell FJ, Niederreiter H (eds) Monte Carlo and Quasi-Monte CarloMethods 2000. Springer, BerlinGoogle Scholar
  35. 35.
    Heinrich S, Kwas M, Woźniakowski H (2004)Quantum Boolean Summation with Repetitions in the Worst-Average Setting. In: Niederreiter H (ed)Monte Carlo and Quasi-Monte Carlo Methods, 2002. Springer, New York, pp 27–49Google Scholar
  36. 36.
    Jaksch P, Papageorgiou A (2003)Eigenvector approximation leading to exponential speedup of quantumeigenvalue calculation.Phys Rev Lett 91:257902; http://arXiv.org/quant-ph/0308016 Google Scholar
  37. 37.
    Jordan SP (2005)Fast Quantum Algorithm for Numerical Gradient Estimation.Phys Rev Lett 95:050501; http://arXiv.org/quant-ph/0405146 Google Scholar
  38. 38.
    Kacewicz BZ (1984)How to increase the order to get minimal-error algorithmsfor systems of ODEs.Numer Math 45:93–104MathSciNetMATHCrossRefGoogle Scholar
  39. 39.
    Kacewicz BZ (2006)Almost optimal solution of initial-value problems by randomized andquantum algorithms.J Complex 22(5):676–690MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    Keller HB (1968)Numerical methods for two-point boundary-value problems.Blaisdell Pub Co, WalthamMATHGoogle Scholar
  41. 41.
    Knuth DE (1997)The Art of Computer Programming, vol 2: Seminumerical Algorithms, 3rd edn.Addison-Wesley Professional, CambridgeGoogle Scholar
  42. 42.
    Kwas M (2005)Quantum algorithms and complexity for certain continuous andrelated discrete problems.Ph D thesis. Department of Computer Science, Columbia UniversityGoogle Scholar
  43. 43.
    Kwas M, Li Y (2003)Worst case complexity of multivariate Feynman–Kac path integration.J Complex 19:730–743MathSciNetMATHCrossRefGoogle Scholar
  44. 44.
    Manin Y (1980)Computable and Uncomputable. Sovetskoye Radio, Moscow (in Russian)Google Scholar
  45. 45.
    Manin YI (1999)Classical computing, quantum computing, and Shor'sfactoring algorithm. http://arXiv.org/quant-ph/9903008
  46. 46.
    Morita S, Nishimori H (2007)Convergence of Quantum Annealing with Real-Time Schrödinger Dynamics.J Phys Soc Jpn 76(6):064002; http://arXiv.org/quant-ph/0702252 MathSciNetCrossRefGoogle Scholar
  47. 47.
    Nayak A, Wu F (1999)The quantum query complexity of approximating the medianand related statistics. In: Proc STOC 1999, Association for Computing Machinery, New York, pp 384–393. http://arXiv.org/quant-ph/9804066
  48. 48.
    Nielsen MA, Chuang IL (2000)Quantum Computation andQuantum Information. Cambridge University Press, CambridgeMATHGoogle Scholar
  49. 49.
    Novak E (1988)Deterministic and Stochastic Error Bounds in Numerical Analysis.Lecture Notes in Mathematics, 1349. Springer, BerlinGoogle Scholar
  50. 50.
    Novak E (2001)Quantum complexity of integration.J Complex 17:2–16; http://arXiv.org/quant-ph/0008124 MATHCrossRefGoogle Scholar
  51. 51.
    Ortiz G, Gubernatis JE, Knill E, Laflamme R (2001)Quantum algorithms for fermionic simulations.Phys Rev A 64(2):022319; http://arXiv.org/cond-mat/0012334 CrossRefGoogle Scholar
  52. 52.
    Papageorgiou A (2004)Average case quantum lower bounds for computing the boolean mean.J Complex 20(5):713–731MATHCrossRefGoogle Scholar
  53. 53.
    Papageorgiou A (2007)On the complexity of the multivariateSturm–Liouville eigenvalue problem.J Complex 23(4–6):802–827MATHCrossRefGoogle Scholar
  54. 54.
    Papageorgiou A, Traub JF (2005)Qubit complexity of continuous problems.http://arXiv.org/quant-ph/0512082
  55. 55.
    Papageorgiou A, Woźniakowski H (2005)Classical and Quantum Complexity of the Sturm–LiouvilleEigenvalue Problem.Quantum Inf Process 4(2):87–127; http://arXiv.org/quant-ph/0502054 Google Scholar
  56. 56.
    Paredes B, Verstraete F, Cirac JI (2005)Exploiting Quantum Parallelism to Simulate Quantum Random Many-Body Systems.Phys Rev Lett 95:140501; http://arXiv.org/cond-mat/0505288 Google Scholar
  57. 57.
    Plaskota L (1996)Noisy Information and Computational Complexity.Cambridge University Press, CambridgeMATHCrossRefGoogle Scholar
  58. 58.
    Plaskota L, Wasilkowski GW, Woźniakowski H (2000)A new algorithm and worst case complexity for Feynman–Kac path integration.J Comp Phys 164(2):335–353Google Scholar
  59. 59.
    Ritter K (2000)Average-Case Analysis of Numerical Problems.Lecture Notes in Mathematics, 1733. Springer, BerlinMATHCrossRefGoogle Scholar
  60. 60.
    Shor PW (1997)Polynomial-time algorithms for prime factorization anddiscrete logarithm on a quantum computer.SIAM J Comput 26(5):1484–1509MathSciNetMATHCrossRefGoogle Scholar
  61. 61.
    Somma R, Ortiz G, Knill E, Gubernatis (2003)Quantum Simulations of Physics Problems. In: Pirich AR, Brant HE (eds)Quantum Information and Computation. Proc SPIE 2003, vol 5105. The International Society for Optical Engineering, Bellingham, pp 96–103. http://arXiv.org/quant-ph/0304063
  62. 62.
    Sornborger AT, Stewart ED (1999)Higher Order Methods for Simulations on Quantum Computers.Phys Rev A 60(3):1956–1965; http://arXiv.org/quant-ph/9903055 CrossRefGoogle Scholar
  63. 63.
    Strang G, Fix GJ (1973)An Analysis of the Finite Element Method. Prentice-Hall,Englewood CliffsMATHGoogle Scholar
  64. 64.
    Szkopek T, Roychowdhury V, Yablonovitch E, Abrams DS (2005)Egenvalue estimation of differential operators with a quantum algorithm.Phys Rev A 72:062318CrossRefGoogle Scholar
  65. 65.
    Titschmarsh EC (1958)Eigenfunction Expansions Associated with Second-OrderDifferential Equations, Part B. Oxford University Press, OxfordGoogle Scholar
  66. 66.
    Traub JF (1999)A continuous model of computation.Phys Today May:39–43CrossRefGoogle Scholar
  67. 67.
    Traub JF, Werschulz AG (1998)Complexity and Information.Cambridge University Press, CambridgeMATHGoogle Scholar
  68. 68.
    Traub JF, Woźniakowski H (1980)A general theory of optimal algorithms.ACM Monograph Series. Academic Press, New YorkGoogle Scholar
  69. 69.
    Traub JF, Woźniakowski H (1992)The Monte Carlo algorithm with a pseudorandom generator.Math Comp 58(197):323–339Google Scholar
  70. 70.
    Traub JF, Woźniakowski H (2002)Path integration on a quantum computer.Quantum Inf Process 1(5):365–388; http://arXiv.org/quant-ph/0109113 Google Scholar
  71. 71.
    Traub JF, Wasilkowski GW, Woźniakowski H (1988)Information‐Based Complexity. Academic Press, New YorkGoogle Scholar
  72. 72.
    Wasilkowski GW, Woźniakowski H (1996)On tractability of path integration.J Math Phys 37(4):2071–2088Google Scholar
  73. 73.
    Weinberger HF (1956)Upper and Lower Bounds for Eigenvalues by Finite Difference Methods.Commun Pure Appl Math IX:613–623MathSciNetCrossRefGoogle Scholar
  74. 74.
    Weinberger HF (1958)Lower Bounds for Higher Eigenvalues by Finite Difference Methods.Pacific J Math 8(2):339–368MathSciNetMATHCrossRefGoogle Scholar
  75. 75.
    Werschulz AG (1991)The Computational Complexity of Differential and Integral Equations.Oxford University Press, OxfordMATHGoogle Scholar
  76. 76.
    Wisner S (1996)Simulations of Many-Body Quantum Systems by a Quantum Computer.http://arXiv.org/quant-ph/96
  77. 77.
    Woźniakowski H (2006)The Quantum Setting with Randomized Queries for Continuous Problems.Quantum Inf Process 5(2):83–130Google Scholar
  78. 78.
    Yepez J (2002)An efficient and accurate quantum algorithm for the Dirac equation.http://arXiv.org/quant-ph/0210093
  79. 79.
    Zalka C (1998)Simulating quantum systems on a quantum computer.Proc Royal Soc Lond A 454(1969):313–322; http://arXiv.org/quant-ph/9603026 MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Anargyros Papageorgiou
    • 1
  • Joseph F. Traub
    • 1
  1. 1.Department of Computer ScienceColumbia UniversityNew YorkUSA