Skip to main content

Phase Transitions in Cellular Automata

  • Reference work entry
Computational Complexity

Article Outline

Glossary

Definition of the Subject

Introduction

The Domany–Kinzel Cellular Automaton

Car Traffic Models

Epidemic Models

Future Directions

Bibliography

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,500.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Phase transition :

In statistical physics, a phase transition is the transformation of a macroscopic system from one phase to another. Phase transitions are divided into two types. First-order phase transitions are characterized by discontinuities of first‐order derivatives of the Gibbs free energy, such as the entropy or the volume whereas second‐order phase transitions are characterized by power‐law behaviors of second‐order derivatives of the Gibbs free energy such as the specific heat or the magnetic susceptibility. These singular behaviors occur for specific values of intensive variables such as the temperature or the magnetic field. Similar behaviors have also been discovered in many‐component systems.

Critical behavior :

Critical behavior manifests itself in many‐component systems and is characteristic of a cooperative behavior of the various components. This notion has been introduced in equilibrium statistical physics for many‐body systems that exhibit second‐order phase transitions. In the vicinity of the transition temperature T c, a singular physical quantity Q has a power‐law behavior, that is, it behaves as \( { |T-T_\mathrm{c}|^\varepsilon } \), where ε is the critical exponent characterizing the critical behavior of Q.

Universality :

Despite the great variety of physical systems that exhibit equilibrium second‐order phase transitions, their critical behaviors, characterized by a set of critical exponents, fall into a small number of universality class es that only depend on the symmetry of the order parameter and the space dimension. Critical behavior is universal in the sense that it does not depend upon details whose characteristic size is much less than the correlation length, such as lattice structure, range of interactions (as long as this range is finite), spin length, and so on. Since time is involved in nonequilibrium critical phenomena, universality classes are expected to offer a richer variety.

Cellular automaton :

A cellular automaton is a fully discrete dynamical system. It consists of a regular finite‐dimensional lattice of cells, each one in a state belonging to a finite set of states. The state of each cell evolves in discrete time steps. At time t the state of a given cell is a function of the states of a finite number of neighboring cells at time \( { t-1 } \). The neighborhood of a given cell may or may not include the cell itself. All cells evolve according to the same evolution rule which may be either deterministic or probabilistic.

Model :

A model is a simplified mathematical representation of a system. In the actual system, although many features are likely to be important, not all of them, however, should be included in the model. Only a few relevant features which are thought to play an essential role in the interpretation of the observed phenomena should be retained. If it captures the key elements of a complex system, a simple model, may elicit highly relevant questions.

Mean‐field approximation :

In a many‐agent system the mean‐field approximation is a first attempt to understand the behavior of the system. Although rather crude, it is often useful. Ignoring space correlations between the agents and replacing local interactions by uniform long‐range ones, the mean‐field approximation only deals with average quantities. Historically, under the name “molecular field theory”, it was first used by Pierre Weiss (1869–1940) in 1907 to build up the first simple theory of the para‐ferromagnetic second‐order phase transition.

Bibliography

Primary Literature

  1. Ódor G (2004) Universality classes in nonequilibrium lattice systems. Rev Mod Phys 76:663–724

    Google Scholar 

  2. Hinrichsen H (2006) Non‐equilibrium phase transitions. Physica A 369:1–28

    Article  MathSciNet  Google Scholar 

  3. Boccara N (2004) Modeling Complex Systems. Springer, New York

    Google Scholar 

  4. Boccara N (1976) Symétries Brisées. Hermann, Paris

    Google Scholar 

  5. Boccara N (1972) On the microscopic formulation of Landau theory of phase transition.Solid State Commun 11:131–141

    Article  Google Scholar 

  6. Wolfram S (1983) Statistical physics of cellular automata. Rev Mod Phys 55:601–644

    Article  MathSciNet  MATH  Google Scholar 

  7. Kinzel W (1983) Directed percolation in Percolation, Structures and Processes. Ann Isr Phys Soc 5:425–445

    Google Scholar 

  8. Kinzel W, Yeomans J (1981) Directed percolation: a finite‐size scaling renormalization group approach. J Phys A 14:L163–L168

    Article  Google Scholar 

  9. Domany E, Kinzel W (1984) Equivalence of cellular automata to Ising models and directed percolation. Phys Rev Lett 53:311–314

    Article  MathSciNet  Google Scholar 

  10. Martins ML, Verona de Resende HF, Tsallis C, Magalhães ACN (1991) Evidence of a new phase in the Domany–Kinzel cellular automaton. Phys Rev Lett 66:2045–2047

    Google Scholar 

  11. Zebende GF, Penna TJP (1994) The Domany–Kinzel cellular automaton phase diagram. J Stat Phys 74:1274–1279

    Article  Google Scholar 

  12. Tomé T, de Oliveira J (1997) Renormalization group of the Domany–Kinzel cellular automaton.Phys Rev E 55:4000–4004

    Google Scholar 

  13. Bagnoli F, Boccara N, Rechtman R (2001) Nature of phase transitions in a probabilistic cellular automaton with two absorbing states. Phys Rev E 63:046 116

    Article  Google Scholar 

  14. Nagel K, Schreckenberg M (1992) A cellular automaton model for freeway traffic. J Phys I 2:2221–2229

    Article  Google Scholar 

  15. Boccara N, Fukś H (2000) Critical behavior of a cellular automaton highway traffic model. J Phys A: Math Gen 33:3407–3415

    Google Scholar 

  16. Fukui M, Ishibashi Y (1996) Traffic flow in a 1D cellular automaton model including cars moving with high speed. J Phys Soc Jpn 65:1868–1870

    Article  Google Scholar 

  17. Boccara N, Nasser J, Roger M (1991) Particlelike structures and their interactions in spatiotemporal patterns generated by one‐dimensional deterministic cellular‐automaton rules.Phys Rev A 44:866–875

    Article  Google Scholar 

  18. Boccara N, Fukś H (1998) Cellular automaton rules conserving the number of active sites. J Phys A: Math Gen 31:6007–6018

    Google Scholar 

  19. Boccara N, Fukś H (2002) Number‐conserving cellular automaton rules. Fundamenta Informaticae 52:1–13

    Google Scholar 

  20. Boccara N (2001) On the existence of a variational principle for deterministic cellular automaton odels of highway traffic flow. Int J Mod Phys C 12:1–16

    Article  MathSciNet  Google Scholar 

  21. Grassberger P (1983) On the critical behavior of the general epidemic process and dynamical percolation. Math Biosci 63:157–172

    Article  MATH  Google Scholar 

  22. Cardy JL, Grassberger P (1985) Epidemic models and percolation. J Phys A: Math Gen 18:L267–L271

    Article  MathSciNet  MATH  Google Scholar 

  23. Kermack WO, McKendrick AG (1927) A contribution to the mathematical theory of epidemics. Proc Royal Soc A 115:700–721

    Article  MATH  Google Scholar 

  24. Boccara N, Cheong K (1993) Critical behaviour of a probabilistic automata network SIS model for the spread of an infectious disease in a population of moving individuals. J Phys A: Math Gen 26:3707–3717

    Article  MathSciNet  MATH  Google Scholar 

  25. Boccara N, Cheong K (1993) Automata network epidemic models. In: Boccara N, Goles E, Martínez S, Picco P (eds) Cellular Automata and Cooperative Systems. Kluwer, Dordrecht, pp 29–44

    Google Scholar 

  26. Grassberger P, Krause F, Von der Twer T (1984) A new type of kinetic critical phenomenon. J Phys A: Math Gen 17:L105–L109

    Article  Google Scholar 

  27. Kinzel W (1985) Phase transitions in cellular automata. Z Phys B 58:229–244

    Article  MathSciNet  MATH  Google Scholar 

  28. Cardy J (1983) Field theoretic treatment of an epidemic process with immunisation. J Phys A 16:L709–L712

    Article  MathSciNet  MATH  Google Scholar 

  29. Kaneko K, Akutsu Y (1986) Phase transitions in two‐dimensional stochastic cellular automata. J Phys A: Math Gen 19:L69–L75

    Article  MathSciNet  Google Scholar 

  30. Boccara N, Roger M (1993) Site‐exchange cellular automata. In: Tirapegui E, Zeller W (eds) Instabilities and Nonequilibrium Structures, IV. Kluwer Dordrecht, pp 109–118

    Chapter  Google Scholar 

  31. Boccara N, Roger M (1994) Some properties of local and nonlocal site‐exchange deterministic cellular automata. Int J Mod Phys C 5:581–588

    Article  Google Scholar 

  32. Boccara Nasser J, Roger M (1994) Critical behavior of a probabilistic local and nonlocal site‐exchange cellular automaton. Int J Mod Phys C 5:537–545

    Article  Google Scholar 

  33. Ódor G, Boccara N, Szabo G (1993) Phase‐transition study of a one‐dimensional probabilistic site‐exchange cellular automaton. Phys Rev E 48:3168–3171

    Google Scholar 

  34. Kohring GA, Schreckenberg M (1992) The Domany–Kinzel cellular automaton revisited.J Phys I (France) 2:2033–2037

    Article  Google Scholar 

  35. Lübeck S (2004) Universal scaling of non‐equilibrium phase transitions. Int J Mod Phys B 18:3977–4118

    Google Scholar 

  36. Essam J (1989) Directed compact percolation: cluster size and hyperscaling. J Phys A: Math Gen 22:4927–4937

    Article  MathSciNet  MATH  Google Scholar 

  37. Dickman R, Tretyakov A (1995) Hyperscaling in the Domany–Kinzel cellular automaton.Phys Rev E 52:3218–3220

    Article  Google Scholar 

  38. Bohr T, van Hecke M, Mikkelsen R, Ipsen M (2001) Breakdown of universality in transitions to spatiotemporal chaos. Phys Rev Lett 24:5482–5485

    Article  Google Scholar 

  39. Katori M, Konno N, Tanemura H (2002) Limit theorems for the nonattractive Domany–Kinzel model. Ann Probab 30:933–947

    Article  MathSciNet  MATH  Google Scholar 

  40. Biham O, Middleton A, Levine D (1992) Self‐organization and a dynamical transition in traffic flow models. Phys Rev A 46:R6124–R6127

    Article  Google Scholar 

  41. Nagatani T (1993) Jamming transition in the traffic‐flow model with two‐level crossings. Phys Rev E 48:3290–3294

    Article  Google Scholar 

  42. Nagatani T (1993) Effect of traffic accident on jamming transition in traffic‐flow model. J Phys A: Math Gen 26:L1015–L1020

    Article  MathSciNet  Google Scholar 

  43. Ishibashi Y, Fukui M (1996) Phase diagram for the traffic model of two one‐dimensional roads with a crossing. J Phys Soc Jpn 65:2793–2795

    Article  Google Scholar 

  44. Boccara N, Fukś H, Zeng Q (1997) Car accidents and number of stopped cars due to road blockade on a one‐lane highway. J Phys A: Math Gen 30:3329–3332

    Google Scholar 

  45. Sakakibara T, Honda Y, Horiguchi T (2000) Effect of obstacles on formation of traffic jam in a two‐dimensional traffic network. Phys A: Stat Mech Appl 276:316–337

    Article  Google Scholar 

  46. Schadschneider A, Chowdhury D, Brockfeld E, Klauck K, Santen L, Zittartz J (2000) A new cellular automata model for city traffic. In: Helbing D, Herrmann H, Schreckenberg M, Wolf DE (eds) Traffic and Granular Flow 1999: Social, Traffic, and Granular Dynamics. Springer, Berlin

    Google Scholar 

  47. Fukś H, Boccara N (1998) Generalized deterministic traffic rules. Int J Mod Phys C 9:1–12

    Google Scholar 

  48. Fukś H (1999) Exact results for deterministic cellular automata traffic models. Phys Rev E 60:197–202

    Google Scholar 

  49. Fukui M, Ishibashi Y (1999) Self‐orgsanized phase transitions in cellular automaton models for pedestrians. J Phys Soc Jpn 68:2861–2863

    Article  Google Scholar 

  50. Fukui M, Ishibashi Y (1999) Jamming transition in cellular automaton models for pedestrians on passageway. J Phys Soc Jpn 68:3738–3739

    Article  Google Scholar 

  51. Chowdhury D, Santen L, Schadschneider A (2000) Statistical physics of vehicular traffic and some related systems. Phys Rep 329:199–329

    Article  MathSciNet  Google Scholar 

  52. Rickert M, Nagel K (2001) Traffic simulation: Dynamic traffic assignment on parallel computers in TRANSIMS. Future Gener Comput Syst 17:637–648

    Article  Google Scholar 

  53. Refer to the TRANSIMS Web site: http://transims.tsasa.lanl.gov/

Books and Reviews

  1. Here are a few articles on different problems of phase transitions in cellular automata that might be of interest to readers wishing to go in more details.

    Google Scholar 

  2. Bagnoli F, Franci F, Rechtman R (2002) Opinion formation and phase transitions in a probabilistic cellular automaton withtwo absorbing states. Lecture Notes in Computer Science, vol 2493.Springer, pp 249–258

    Google Scholar 

  3. Behera L, Schweitzer F (2003) On spatial consensus formation: Is the Sznajd model different from a voter model? Int J Mod Phys C 14:1331–1354

    Article  Google Scholar 

  4. Chowdhury D, Santen L, Schadschneider A (2000) Statistical physics of vehicular traffic and some related systems. Phys Rep 329:199–329

    Article  MathSciNet  Google Scholar 

  5. Hołyst JA, Kacperski K, Schweitzer F (2000) Phase transitions in social impact models of opinion formation. Physica A 285:199–210

    Google Scholar 

  6. Kerner BS, Klenov SL, Wolf DE (2002) Cellular automata approach to three‐phase traffic theory. J Phys A 35:9971–10013

    Article  MathSciNet  MATH  Google Scholar 

  7. Maerivoet S, De Moor B (2007) Non‐concave fundamental diagrams and phase transitions in a stochastic traffic cellular automaton. Eur Phys J 42:131–140

    Google Scholar 

  8. Takeuchi K (2006) Can the Ising critical behavior survive in non‐equilibrium synchronous cellular automata? Physica D 223:146–150

    Article  MathSciNet  MATH  Google Scholar 

  9. van Wijland F (2002) Universality class of nonequilibrium phase transition with infinitely many absorbing states. Phys Rev Lett 89:190 602

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag

About this entry

Cite this entry

Boccara, N. (2012). Phase Transitions in Cellular Automata. In: Meyers, R. (eds) Computational Complexity. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1800-9_136

Download citation

Publish with us

Policies and ethics