Computational Complexity

2012 Edition
| Editors: Robert A. Meyers (Editor-in-Chief)

Phase Transitions in Cellular Automata

  • Nino Boccara
Reference work entry

Article Outline


Definition of the Subject


The Domany–Kinzel Cellular Automaton

Car Traffic Models

Epidemic Models

Future Directions



Cellular Automaton Critical Exponent Critical Behavior Epidemic Model Universality Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


Primary Literature

  1. 1.
    Ódor G (2004) Universality classes in nonequilibrium lattice systems. Rev Mod Phys 76:663–724Google Scholar
  2. 2.
    Hinrichsen H (2006) Non‐equilibrium phase transitions. Physica A 369:1–28MathSciNetCrossRefGoogle Scholar
  3. 3.
    Boccara N (2004) Modeling Complex Systems. Springer, New YorkGoogle Scholar
  4. 4.
    Boccara N (1976) Symétries Brisées. Hermann, ParisGoogle Scholar
  5. 5.
    Boccara N (1972) On the microscopic formulation of Landau theory of phase transition.Solid State Commun 11:131–141CrossRefGoogle Scholar
  6. 6.
    Wolfram S (1983) Statistical physics of cellular automata. Rev Mod Phys 55:601–644MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Kinzel W (1983) Directed percolation in Percolation, Structures and Processes. Ann Isr Phys Soc 5:425–445Google Scholar
  8. 8.
    Kinzel W, Yeomans J (1981) Directed percolation: a finite‐size scaling renormalization group approach. J Phys A 14:L163–L168CrossRefGoogle Scholar
  9. 9.
    Domany E, Kinzel W (1984) Equivalence of cellular automata to Ising models and directed percolation. Phys Rev Lett 53:311–314MathSciNetCrossRefGoogle Scholar
  10. 10.
    Martins ML, Verona de Resende HF, Tsallis C, Magalhães ACN (1991) Evidence of a new phase in the Domany–Kinzel cellular automaton. Phys Rev Lett 66:2045–2047Google Scholar
  11. 11.
    Zebende GF, Penna TJP (1994) The Domany–Kinzel cellular automaton phase diagram. J Stat Phys 74:1274–1279CrossRefGoogle Scholar
  12. 12.
    Tomé T, de Oliveira J (1997) Renormalization group of the Domany–Kinzel cellular automaton.Phys Rev E 55:4000–4004Google Scholar
  13. 13.
    Bagnoli F, Boccara N, Rechtman R (2001) Nature of phase transitions in a probabilistic cellular automaton with two absorbing states. Phys Rev E 63:046 116CrossRefGoogle Scholar
  14. 14.
    Nagel K, Schreckenberg M (1992) A cellular automaton model for freeway traffic. J Phys I 2:2221–2229CrossRefGoogle Scholar
  15. 15.
    Boccara N, Fukś H (2000) Critical behavior of a cellular automaton highway traffic model. J Phys A: Math Gen 33:3407–3415Google Scholar
  16. 16.
    Fukui M, Ishibashi Y (1996) Traffic flow in a 1D cellular automaton model including cars moving with high speed. J Phys Soc Jpn 65:1868–1870CrossRefGoogle Scholar
  17. 17.
    Boccara N, Nasser J, Roger M (1991) Particlelike structures and their interactions in spatiotemporal patterns generated by one‐dimensional deterministic cellular‐automaton rules.Phys Rev A 44:866–875CrossRefGoogle Scholar
  18. 18.
    Boccara N, Fukś H (1998) Cellular automaton rules conserving the number of active sites. J Phys A: Math Gen 31:6007–6018Google Scholar
  19. 19.
    Boccara N, Fukś H (2002) Number‐conserving cellular automaton rules. Fundamenta Informaticae 52:1–13Google Scholar
  20. 20.
    Boccara N (2001) On the existence of a variational principle for deterministic cellular automaton odels of highway traffic flow. Int J Mod Phys C 12:1–16MathSciNetCrossRefGoogle Scholar
  21. 21.
    Grassberger P (1983) On the critical behavior of the general epidemic process and dynamical percolation. Math Biosci 63:157–172MATHCrossRefGoogle Scholar
  22. 22.
    Cardy JL, Grassberger P (1985) Epidemic models and percolation. J Phys A: Math Gen 18:L267–L271MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Kermack WO, McKendrick AG (1927) A contribution to the mathematical theory of epidemics. Proc Royal Soc A 115:700–721MATHCrossRefGoogle Scholar
  24. 24.
    Boccara N, Cheong K (1993) Critical behaviour of a probabilistic automata network SIS model for the spread of an infectious disease in a population of moving individuals. J Phys A: Math Gen 26:3707–3717MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Boccara N, Cheong K (1993) Automata network epidemic models. In: Boccara N, Goles E, Martínez S, Picco P (eds) Cellular Automata and Cooperative Systems. Kluwer, Dordrecht, pp 29–44Google Scholar
  26. 26.
    Grassberger P, Krause F, Von der Twer T (1984) A new type of kinetic critical phenomenon. J Phys A: Math Gen 17:L105–L109CrossRefGoogle Scholar
  27. 27.
    Kinzel W (1985) Phase transitions in cellular automata. Z Phys B 58:229–244MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Cardy J (1983) Field theoretic treatment of an epidemic process with immunisation. J Phys A 16:L709–L712MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Kaneko K, Akutsu Y (1986) Phase transitions in two‐dimensional stochastic cellular automata. J Phys A: Math Gen 19:L69–L75MathSciNetCrossRefGoogle Scholar
  30. 30.
    Boccara N, Roger M (1993) Site‐exchange cellular automata. In: Tirapegui E, Zeller W (eds) Instabilities and Nonequilibrium Structures, IV. Kluwer Dordrecht, pp 109–118CrossRefGoogle Scholar
  31. 31.
    Boccara N, Roger M (1994) Some properties of local and nonlocal site‐exchange deterministic cellular automata. Int J Mod Phys C 5:581–588CrossRefGoogle Scholar
  32. 32.
    Boccara Nasser J, Roger M (1994) Critical behavior of a probabilistic local and nonlocal site‐exchange cellular automaton. Int J Mod Phys C 5:537–545CrossRefGoogle Scholar
  33. 33.
    Ódor G, Boccara N, Szabo G (1993) Phase‐transition study of a one‐dimensional probabilistic site‐exchange cellular automaton. Phys Rev E 48:3168–3171Google Scholar
  34. 34.
    Kohring GA, Schreckenberg M (1992) The Domany–Kinzel cellular automaton revisited.J Phys I (France) 2:2033–2037CrossRefGoogle Scholar
  35. 35.
    Lübeck S (2004) Universal scaling of non‐equilibrium phase transitions. Int J Mod Phys B 18:3977–4118Google Scholar
  36. 36.
    Essam J (1989) Directed compact percolation: cluster size and hyperscaling. J Phys A: Math Gen 22:4927–4937MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Dickman R, Tretyakov A (1995) Hyperscaling in the Domany–Kinzel cellular automaton.Phys Rev E 52:3218–3220CrossRefGoogle Scholar
  38. 38.
    Bohr T, van Hecke M, Mikkelsen R, Ipsen M (2001) Breakdown of universality in transitions to spatiotemporal chaos. Phys Rev Lett 24:5482–5485CrossRefGoogle Scholar
  39. 39.
    Katori M, Konno N, Tanemura H (2002) Limit theorems for the nonattractive Domany–Kinzel model. Ann Probab 30:933–947MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    Biham O, Middleton A, Levine D (1992) Self‐organization and a dynamical transition in traffic flow models. Phys Rev A 46:R6124–R6127CrossRefGoogle Scholar
  41. 41.
    Nagatani T (1993) Jamming transition in the traffic‐flow model with two‐level crossings. Phys Rev E 48:3290–3294CrossRefGoogle Scholar
  42. 42.
    Nagatani T (1993) Effect of traffic accident on jamming transition in traffic‐flow model. J Phys A: Math Gen 26:L1015–L1020MathSciNetCrossRefGoogle Scholar
  43. 43.
    Ishibashi Y, Fukui M (1996) Phase diagram for the traffic model of two one‐dimensional roads with a crossing. J Phys Soc Jpn 65:2793–2795CrossRefGoogle Scholar
  44. 44.
    Boccara N, Fukś H, Zeng Q (1997) Car accidents and number of stopped cars due to road blockade on a one‐lane highway. J Phys A: Math Gen 30:3329–3332Google Scholar
  45. 45.
    Sakakibara T, Honda Y, Horiguchi T (2000) Effect of obstacles on formation of traffic jam in a two‐dimensional traffic network. Phys A: Stat Mech Appl 276:316–337CrossRefGoogle Scholar
  46. 46.
    Schadschneider A, Chowdhury D, Brockfeld E, Klauck K, Santen L, Zittartz J (2000) A new cellular automata model for city traffic. In: Helbing D, Herrmann H, Schreckenberg M, Wolf DE (eds) Traffic and Granular Flow 1999: Social, Traffic, and Granular Dynamics. Springer, BerlinGoogle Scholar
  47. 47.
    Fukś H, Boccara N (1998) Generalized deterministic traffic rules. Int J Mod Phys C 9:1–12Google Scholar
  48. 48.
    Fukś H (1999) Exact results for deterministic cellular automata traffic models. Phys Rev E 60:197–202Google Scholar
  49. 49.
    Fukui M, Ishibashi Y (1999) Self‐orgsanized phase transitions in cellular automaton models for pedestrians. J Phys Soc Jpn 68:2861–2863CrossRefGoogle Scholar
  50. 50.
    Fukui M, Ishibashi Y (1999) Jamming transition in cellular automaton models for pedestrians on passageway. J Phys Soc Jpn 68:3738–3739CrossRefGoogle Scholar
  51. 51.
    Chowdhury D, Santen L, Schadschneider A (2000) Statistical physics of vehicular traffic and some related systems. Phys Rep 329:199–329MathSciNetCrossRefGoogle Scholar
  52. 52.
    Rickert M, Nagel K (2001) Traffic simulation: Dynamic traffic assignment on parallel computers in TRANSIMS. Future Gener Comput Syst 17:637–648CrossRefGoogle Scholar
  53. 53.
    Refer to the TRANSIMS Web site:

Books and Reviews

  1. 54.
    Here are a few articles on different problems of phase transitions in cellular automata that might be of interest to readers wishing to go in more details.Google Scholar
  2. 55.
    Bagnoli F, Franci F, Rechtman R (2002) Opinion formation and phase transitions in a probabilistic cellular automaton withtwo absorbing states. Lecture Notes in Computer Science, vol 2493.Springer, pp 249–258Google Scholar
  3. 56.
    Behera L, Schweitzer F (2003) On spatial consensus formation: Is the Sznajd model different from a voter model? Int J Mod Phys C 14:1331–1354CrossRefGoogle Scholar
  4. 57.
    Chowdhury D, Santen L, Schadschneider A (2000) Statistical physics of vehicular traffic and some related systems. Phys Rep 329:199–329MathSciNetCrossRefGoogle Scholar
  5. 58.
    Hołyst JA, Kacperski K, Schweitzer F (2000) Phase transitions in social impact models of opinion formation. Physica A 285:199–210Google Scholar
  6. 59.
    Kerner BS, Klenov SL, Wolf DE (2002) Cellular automata approach to three‐phase traffic theory. J Phys A 35:9971–10013MathSciNetMATHCrossRefGoogle Scholar
  7. 60.
    Maerivoet S, De Moor B (2007) Non‐concave fundamental diagrams and phase transitions in a stochastic traffic cellular automaton. Eur Phys J 42:131–140Google Scholar
  8. 61.
    Takeuchi K (2006) Can the Ising critical behavior survive in non‐equilibrium synchronous cellular automata? Physica D 223:146–150MathSciNetMATHCrossRefGoogle Scholar
  9. 62.
    van Wijland F (2002) Universality class of nonequilibrium phase transition with infinitely many absorbing states. Phys Rev Lett 89:190 602Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Nino Boccara
    • 1
    • 2
  1. 1.Department of PhysicsUniversity of IllinoisChicagoUSA
  2. 2.CE SaclayGif-sur-YvetteFrance