Skip to main content

Neuro-fuzzy Systems

  • Reference work entry
Computational Complexity

Article Outline

Glossary

Definition of the Subject

Introduction

Fuzzy Reasoning

Description of Fuzzy Inference Systems

Logical‐Type Neuro-fuzzy Systems

Mamdani‐Type Neuro-fuzzy Systems

Simplified Neuro-fuzzy Systems

Takagi–Sugeno Neuro-fuzzy Systems

Neuro-fuzzy Systems with Weights

Neuro-fuzzy Systems for Pattern Classification

Learning

Criteria Isolines Method

Future Directions

Acknowledgments

Bibliography

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,500.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Neuro-fuzzy systems:

Fusion of fuzzy logic and neural networks with the ability to automated adaptation to training data and knowledge interpretability.

Fuzzy reasoning:

Reasoning on the basis of fuzzy premises and fuzzy rules inferring fuzzy conclusions.

Bibliography

  1. Aliev RA, Aliev RR (2001) Soft computing and its applications. World ScientificPublishing, Singapore

    Book  Google Scholar 

  2. Berenji HR, Khedkar P (1992) Learning and tuning fuzzy logic controllers throughreinforcements. IEEE Trans. Neural Networks, vol 3. pp 724–740, October

    Google Scholar 

  3. Bubnicki Z (2001) Uncertain variables and their application to decisionmaking. IEEE Trans. on SMC, Part A: Systems and Humans, vol 31, pp 587–596

    Google Scholar 

  4. Bubnicki Z (2002) Uncertain logics, variables andsystems. Springer, Berlin‐London-New York

    MATH  Google Scholar 

  5. Bubnicki Z (2002) A unified approach to descriptive and prescriptiveconcepts in uncertain decision systems, Systems Analysis Modeling Simulation, vol 42, issue 3. Gordon and Breach Science Publishers, Newark, pp 331–342

    Google Scholar 

  6. Chen MY, Linkens DA (2001) A systematic neuro-fuzzy modeling framework withapplication to material property prediction. IEEE Trans. on Fuzzy Systems, vol 31, pp 781–790

    Google Scholar 

  7. Chuang CC, Su SF, Chen SS (2001) Robust TSK fuzzy modeling for functionapproximation with outliers. IEEE Trans. on Fuzzy Systems, vol 9, pp 810–821, December

    Google Scholar 

  8. Corcoran AL, Sen S (1994) Using real-valued genetic algorithms to evolve rulesets for classification. Proc. of the 1st IEEE Conf. Evolut. Computat., Orlando FL, June pp 120–124

    Google Scholar 

  9. Czogała E, Łęski (2000) J fuzzy and neuro-fuzzy intelligentsystems, Physica‐Verlag Company, Heidelberg, New York

    Google Scholar 

  10. Duan JC, Chung FL (2001) Cascaded fuzzy neural network based on syllogisticfuzzy reasoning. IEEE Trans. on Fuzzy Systems, vol 9, pp 293–306

    Google Scholar 

  11. Eubank RL (1999) Nonparametric regression and spline smoothing. Marcel Dekker,New York

    MATH  Google Scholar 

  12. Fodor JC (1991) On fuzzy implication operators, Fuzzy Sets and Systems, vol 42, issue 3. Elsevier, Amsterdam, pp 293–300

    Google Scholar 

  13. Fogel DB (1995) Evolutionary computation: towards a new philosophy of machineintelligence. IEEE Press, New York

    Google Scholar 

  14. Fuller R (2000) Introduction to neuro-fuzzy systems, advances in softcomputing.Physica‐Verlag, New York

    Google Scholar 

  15. Gaweda AE, Żurada JM (2000) Fuzzy neural network with relational fuzzyrules.Proc. of the Intern. Joint Conference on Neural Networks IJCNN'2000, vol 5, pp 3–8, Como, Italy, July23–27

    Google Scholar 

  16. Gaweda AE, Żurada JM (2001) Data-driven design of fuzzy system withrelational input partition. Proc of the Int Conference on Fuzzy Systems FUZZ-IEEE'2001, Melbourne, Australia, December2–5

    Google Scholar 

  17. Hirota K (1993) Industrial Applications of Fuzzy Technology. Springer,Tokyo, Berlin, Heidelberg, New York

    Book  Google Scholar 

  18. Jang JSR (1993) ANFIS: Adaptive‐network-based fuzzy inferencesystem. IEEE Trans. Syst., Man, Cybern., vol 23, pp 665–685, June

    Google Scholar 

  19. Jang JSR, Sun CT (1995) Neuro-fuzzy modeling and control. Proc IEEE, vol 83,pp 378–406, March

    Google Scholar 

  20. Jang JS, Sun CT, Mizutani E (1997) Neuro-fuzzy and soft computing. PrenticeHall, Englewood Cliffs

    Google Scholar 

  21. Juang C-F, Lin C-T (1998) An on-line self-constructing neural fuzzy inferencenetwork and its applications. IEEE Trans. on Fuzzy Systems, vol 6, pp 12–32, February

    Google Scholar 

  22. Kacprzyk J (1997) Multistage fuzzy control. Wiley,Chichester

    MATH  Google Scholar 

  23. Kasabov N (1996) Foundations of neural networks, fuzzy systems and knowledgeengineering. The MIT Press CA, Cambridge

    MATH  Google Scholar 

  24. Kasabov N (2002) DENFIS: dynamic evolving neural‐fuzzy inference systemand its application for time‐series prediction. IEEE Trans. on Fuzzy Systems, vol 10, pp 144–154, April

    Google Scholar 

  25. Kay SM (1988) Modern spectral estimation. Theory and application. PrenticeHall, Englewood Cliffs

    MATH  Google Scholar 

  26. Kecman V (2001) Learning and soft computing. MIT Press,Cambridge

    MATH  Google Scholar 

  27. Klement EP, Mesiar R, Pap E (2000) Triangular norms. Kluwer, Dordrecht

    Book  MATH  Google Scholar 

  28. Lee K-M, Kwak D-H, Lee-Kwang H (1994) A fuzzy neural network model forfuzzy inference and rule tuning. Int J Uncertainty, Fuzziness and Knowledge‐Based Systems, vol 2, no. 3,pp 265–277

    Google Scholar 

  29. Lee K-M, Kwak D-H, Lee-Kwang H (1996) Fuzzy inference neural network for fuzzymodel tuning. IEEE Trans on Systems, Man, and Cybernetics. Part B, vol 26, No. 4, pp 637–645

    Google Scholar 

  30. Lin CT (1994) Neural fuzzy control systems with structure and parameterlearning.World Scientific, Singapore

    Google Scholar 

  31. Lin CT, Lee CSG (1991) Neural‐network-based fuzzy logic control anddecision system.IEEE Trans Comput, vol 40, pp 1320–1336, December

    Google Scholar 

  32. Lin CT, Lee GCS (1997) Neural fuzzy systems a neuro-fuzzy synergism tointelligent systems. Prentice Hall, Englewood Cliffs

    Google Scholar 

  33. Lin CT, Lu YC (1995) A neural fuzzy systems with linguistic teachingsignals. IEEE Trans on Fuzzy Systems, vol 3, pp 169–189, May

    Google Scholar 

  34. Lin Y, Cunningham GA III (1995) A new approach to fuzzy-neural systemmodeling. IEEE Trans. on Fuzzy Systems, vol 3, pp 190–198, May

    Google Scholar 

  35. Marple SL Jr (1987) Digital spectral analysis with applications. PrenticeHall, Englewood Cliffs

    Google Scholar 

  36. Michalewicz Z (1992) Genetic algorithms + data structures = evolutionprograms. Springer, Berlin

    Book  MATH  Google Scholar 

  37. Mouzouris GC, Mendel JM (1997) Nonsingleton fuzzy logic systems: Theory andapplication.IEEE Trans on Fuzzy Systems, vol 5, No. 1, pp 56–71

    Google Scholar 

  38. Nauck D, Kruse R (1996) Designing neuro-fuzzy systems throughback-propagation. In: Pedrycz W (ed) Fuzzy modeling: paradigms and practice. Kluwer, Boston,pp 203–228

    Chapter  Google Scholar 

  39. Nauck D, Kruse R (1999) Neuro-fuzzy systems for function approximation. FuzzySets and Systems, vol 101, pp 261–271

    Google Scholar 

  40. Nauck D, Klawon F, Kruse R (1997) Foundations of neuro-fuzzy systems. Wiley,Chichester

    Google Scholar 

  41. Nie J, Linkens D (1995) Fuzzy-Neural Control. Principles, algorithms andapplications. Prentice Hall, New York, London

    MATH  Google Scholar 

  42. Pagan A, Ullah A (1999) Nonparametric econometrics. Cambridge Univ. Press,London

    Google Scholar 

  43. Pawlak Z (1982) Rough sets. Int J Inform Comput Sci, vol 11,no. 341

    Google Scholar 

  44. Pawlak Z (1991) Rough sets. Theoretical aspects of reasoning aboutdata. Kluwer, Dordrecht

    MATH  Google Scholar 

  45. Pedrycz W (1992) Fuzzy neural networks with reference neurons as patternclassifiers.IEEE Trans Neural Networks, vol 3, no. 5, pp 770–775

    Google Scholar 

  46. Roubos H, Setnes M (2001) Compact and transparent fuzzy models and classifiersthrough iterative complexity reduction, IEEE Trans. on Fuzzy Systems, vol 9, pp 516–524, August

    Google Scholar 

  47. Rutkowska D (2002) Neuro-fuzzy architectures and hybridlearning. Springer, Heidelberg

    Book  MATH  Google Scholar 

  48. Rutkowski L (2004) Flexible neuro-fuzzy systems. Kluwer,Norwell

    MATH  Google Scholar 

  49. Rutkowski L, Cpałka K (2000) Flexible structures of neuro-fuzzy systems,Quo Vadis Computational Intelligence, Studies in Fuzziness and Soft Computing, vol 54.Springer, Berlin, pp 479–484

    Google Scholar 

  50. Rutkowski L, Cpałka K (2003) Flexible neuro-fuzzy systems. IEEETrans. Neural Networks, vol 14, pp 554–574

    Google Scholar 

  51. Rutkowski L, Rafajłowicz E (1989) On global rate of convergence of somenonparametric identification procedures. IEEE Trans. on Automatic Control, vol AC-34, no.10, pp 1089–1091

    Google Scholar 

  52. Söderström T, Stoica P (1989) System identification. Prentice-Hall,London

    Google Scholar 

  53. Tadeusiewicz R (1993) Neural networks RM. Academic Publishing House, Warsaw(in Polish)

    Google Scholar 

  54. Tadeusiewicz R (1998) Elementary introduction to neural networks with computerprograms.Academic Publishing House, Warsaw (in Polish)

    Google Scholar 

  55. Takagi T, Sugeno M (1985) Fuzzy identification of systems and its applicationto modeling and control. IEEE Trans Systems, Man, and Cybernetics, vol 15, pp 116–132

    Google Scholar 

  56. UCI respository of machine learning databases, Available online:http://ftp.ics.uci.edu/pub/machine-learning-databases/

  57. Wang JS, Lee CSG (2002) Self-adaptive neuro-fuzzy inference systems forclassification applications. IEEE Trans. on Fuzzy Systems, vol 10, pp 790–802

    Google Scholar 

  58. Wang LX (1994) Adaptive Fuzzy Systems and Control. PTR Prentice Hall,Englewood Cliffs

    Google Scholar 

  59. Wang LX, Mendel JM (1992) Generating fuzzy rules by learning from examples,IEEE Transactions on Systems. Man and Cybernetics, vol 22, no. 6, pp 1414–1427

    Google Scholar 

  60. Yager RR (1990) Fuzzy logic controller structures. Proc. SPIE Symp. LaserSci. Optics Appl. 368–378

    Google Scholar 

  61. Yager RR (1992) A general approach to rule aggregation in fuzzy logic control.Appl Intelligence, vol 2, pp 333–351

    Google Scholar 

  62. Zadeh LA (1965) Fuzzy sets. Information and Control, vol 8, no. 3,pp 338–353

    Google Scholar 

  63. Żurada JM (1992) Introduction to artificial neural systems. WestPublishing Company

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Foundation for Polish Science (Professorial Grant2005–2008) and the Polish Ministry of Science and Higher Education (Special Research Project 2006–2009 and Polish‐Singapore ResearchProject 2008–2010) and by science funds for 2007–2010 as research project No. N N516 1669 33 and No. N N516 1155 33.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag

About this entry

Cite this entry

Rutkowski, L., Cpałka, K., Nowicki, R., Pokropińska, A., Scherer, R. (2012). Neuro-fuzzy Systems . In: Meyers, R. (eds) Computational Complexity. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1800-9_131

Download citation

Publish with us

Policies and ethics