Skip to main content

Multiwavelets

  • Reference work entry
Computational Complexity
  • 335 Accesses

Article Outline

Glossary

Definition of the Subject

Introduction

Refinable Function Vectors

Multiresolution Approximation and Discrete Multiwavelet Transform

Moments and Approximation Order

The Discrete Multiwavelet Transform (DMWT) Algorithm

Pre- and Postprocessing and Balanced Multiwavelets

Boundary Handling

Applications

Polyphase Factorization

Lifting

Two‐Scale Similarity Transform (TST)

Examples and Software

Future Directions

Bibliography

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,500.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Balanced multiwavelet:

A multiwavelet for which the expansion coefficients for polynomials up to a certain degree are polynomial sequences. Balanced multiwavelets do not require pre- or postprocessing.

Discrete multiwavelet transform (DMWT):

The algorithm which decomposes a signal into a coarse approximation and fine detail at several levels. A direct generalization of the Discrete Wavelet Transform (DWT) for scalar wavelets.

Lifting:

A method for modifying an existing multiwavelet, or building one from scratch. Lifting can be used to impose approximation order, balancing, or symmetry.

Modulation matrix:

The modulation matrix

$$ M(\xi) = \begin{pmatrix} H(\xi) & H(\xi+\pi) \\ G(\xi) & G(\xi+\pi) \end{pmatrix} \:, $$

can be used to describe the action of the DMWT. It is also used in the construction of multiwavelets by lifting or TST.

Multiresolution, multiresolution approximation (MRA):

Multiresolution is the fundamental concept underlying everything related to any kind of wavelet. A signal is decomposed into a low resolution approximation, plus fine detail at one or more levels of resolution. An MRA is a nested chain of subspaces of L 2 which describes this concept mathematically.

Multiscaling function, multiwavelet function,wavelet:

A multiwavelet of multiplicity r consists of a multiscaling function and a multiwavelet function. Both are functions from ℝ to ℂr, that is, function vectors. Multiwavelets are not the same as multivariate wavelets, which are functions from \( { \mathbb{R}^{n} } \) to ℂ.

Polyphase decomposition, polyphase matrix:

The polyphase decomposition separates a coefficient sequence into two sequences, by even and odd subscripts. It can be used to describe or implement the DMWT.The polyphase matrix

$$ P(z) = \begin{pmatrix} H^{(0)}(z) & H^{(1)}(z) \\ G^{(0)}(z) & G^{(1)}(z) \end{pmatrix}\:, $$

is useful in the construction of multiwavelets, especially orthogonal multiwavelets.

Pre- and postprocessing:

Before a DMWT can be applied to a signal, the signal needs to be written as a multiscaling function series. The DMWT works on the coefficients of the series expansion, not on the values of the signal.For scalar wavelets the distinction can usually be ignored, but not for multiwavelets. Having a multiwavelet of approximation order p does not mean that the coefficients of a polynomial up to order \( { p-1 } \) form a polynomial sequence.Preprocessing converts point samples into expansion coefficients. Postprocessing does the opposite.

Refinable function vector, refinement equation:

A refinable function vector of multiplicity r is a function from ℝ to \( { \mathbb{C}^{r} } \) which satisfies a refinement equation of the form

$$ \boldsymbol{\phi}(x) = \sqrt{2} \sum_{k=k_{0}}^{k_{1}} H_{k} \, \boldsymbol{\phi}(2x-k) $$

with recursion coefficients H k which are \( { r\! \times\! r } \) matrices.

Symbol:

Given any sequence \( { \mathbf{a} = \{a_{k} \} } \), the symbol of \( { \mathbf{a} } \) is defined as

$$ \begin{aligned} a(\xi) &= \sum_{k} a_{k} \text{e}^{-i\xi} \quad \text{or} \\[1mm] a(z) &= \sum_{k} a_{k} z^{k}\:,\quad z = \text{e}^{-i\xi}\:, \end{aligned}$$

possibly with a normalizing factor. The sequence may represent point samples of a signal, the recursion coefficients of a two‐scale refinement equation, or other quantities.Both the trigonometric and polynomial notations are useful, depending on the setting; it is trivial to switch back and forth between them.

Two‐scale similarity transform (TST):

The TST is a way of moving approximation orders in a biorthogonal multiwavelet pair from one side to the other. For scalar wavelets it corresponds to moving a factor of \( { (1+\text{e}^{-i\xi})/2 } \) back and forth.The TST can be used to modify an existing multiwavelet, or to build multiwavelets from scratch. It can also be used to impose or characterize symmetry, approximation order and balancing.

Bibliography

  1. Alpert BK (1990) Sparse representation of smooth linear operators.TechnicalReport YALEU/DCS/RR-814. Yale University, New Haven

    Google Scholar 

  2. Alpert BK, Beylkin G, Coifman R, Rokhlin V (1990) Wavelets for the fast solutionof second‐kind integral equations.Technical Report YALEU/DCS/RR-837. Yale University, New Haven

    Google Scholar 

  3. Alpert B, Beylkin G, Gines D, Vozovoi L (2002) Adaptive solution of partialdifferential equations in multiwavelet bases.J Comput Phys 182(1):149–190

    Article  MathSciNet  MATH  Google Scholar 

  4. Alpert BK (1993) A class of bases in L 2 for the sparse representation of integral operators.SIAM J Math Anal24(1):246–262

    Article  MathSciNet  MATH  Google Scholar 

  5. Andersson L, Hall N, Jawerth B, Peters G (1994) Wavelets on closed subsets of thereal line.In: Recent advances in wavelet analysis. Academic Press, Boston, pp 1–61

    Google Scholar 

  6. Attakitmongcol K, Hardin DP, Wilkes DM (2001) Multiwavelet prefilters II: optimalorthogonal prefilters.IEEE Trans Image Proc 10(10):1476–1487

    Article  MATH  Google Scholar 

  7. Averbuch AZ, Zheludev VA (2002) Lifting scheme for biorthogonal multiwaveletsoriginated from Hermite splines.IEEE Trans Signal Process 50(3):487–500

    Article  MathSciNet  Google Scholar 

  8. Averbuch A, Israeli M, Vozovoi L (1999) Solution of time-dependent diffusionequations with variable coefficients using multiwavelets.J Comput Phys 150(2):394–424

    Article  MathSciNet  MATH  Google Scholar 

  9. Averbuch A, Braverman E, Israeli M (2000) Parallel adaptive solution ofa Poisson equation with multiwavelets.SIAM J Sci Comput 22(3):1053–1086

    Article  MathSciNet  MATH  Google Scholar 

  10. Bacchelli S, Cotronei M, Lazzaro D (2000) An algebraic constructionof k‑balanced multiwavelets via the lifting scheme.Numer Algorithms23(4):329–356

    Article  MathSciNet  MATH  Google Scholar 

  11. Bacchelli S, Cotronei M, Sauer T (2002) Multifilters with and withoutprefilters.BIT 42(2):231–261

    Article  MathSciNet  MATH  Google Scholar 

  12. Bramble JH, Cohen A, Dahmen W, Canuto C (ed) (2003) Multiscale problems andmethods in numerical simulations. Lecture Notes in Mathematics, vol 1825. Springer, Berlin.Lectures given at the CIME Summer School held inMartina Franca, 9–15 September, 2001

    Google Scholar 

  13. Brislawn C (1996) Classification of nonexpansive symmetric extension transformsfor multirate filter banks.Appl Comput Harmon Anal 3(4):337–357

    Article  MATH  Google Scholar 

  14. Bui TD, Chen G (1998) Translation-invariant denoising using multiwavelets.IEEE Trans Signal Process 46(12):3414–3420

    Article  Google Scholar 

  15. Burrus CS, Gopinath RA, Guo H (1998) Introduction to wavelets and wavelettransforms: a primer.Prentice Hall, New York

    Google Scholar 

  16. Chen Z, Micchelli CA, Xu Y (1997) The Petrov–Galerkin method for secondkind integral equations II: multiwavelet schemes.Adv Comput Math 7(3):199–233

    Article  MathSciNet  MATH  Google Scholar 

  17. Cohen A, Daubechies I, Vial P (1993) Wavelets on the interval and fast wavelet transforms. Appl Comput Harmon Anal 1(1):54–81

    Article  MathSciNet  MATH  Google Scholar 

  18. DahmenW, Han B, Jia RQ, Kunoth A (2000) Biorthogonal multiwavelets on theinterval: cubic Hermite splines.Constr Approx 16(2):221–259

    Article  MathSciNet  MATH  Google Scholar 

  19. Daubechies I, Sweldens W (1998) Factoring wavelet transforms into liftingsteps.J Fourier Anal Appl 4(3):247–269

    Article  MathSciNet  MATH  Google Scholar 

  20. Davis GM, Strela V, and Turcajova R (2000)Multiwavelet construction via the lifting scheme.In: Wavelet analysis and multiresolution methods. Dekker, New York, pp57–79

    Google Scholar 

  21. Donovan GC, Geronimo JS, Hardin DP, Massopust PR (1996) Construction oforthogonal wavelets using fractal interpolation functions.SIAM J Math Anal 27(4):1158–1192

    Article  MathSciNet  MATH  Google Scholar 

  22. Downie TR, Silverman BW (1998) The discrete multiple wavelet transform andthresholding methods.IEEE Trans Signal Process 46(9):2558–2561

    Article  Google Scholar 

  23. Efromovich S (2001) Multiwavelets and signal denoising.Sankhyā Ser A63(3):367–393

    MathSciNet  MATH  Google Scholar 

  24. Goh SS, Yap VB (1998) Matrix extension and biorthogonal multiwaveletconstruction.Linear Algebr Appl 269:139–157

    Article  MathSciNet  MATH  Google Scholar 

  25. Goh SS, Jiang Q, Xia T (2000) Construction of biorthogonal multiwavelets usingthe lifting scheme.Appl Comput Harmon Anal 9(3):336–352

    Article  MathSciNet  MATH  Google Scholar 

  26. Han B, Jiang Q (2002) Multiwavelets on the interval.Appl Comput Harmon Anal12(1):100–127

    Article  MathSciNet  MATH  Google Scholar 

  27. Hardin DP, Marasovich JA (1999) Biorthogonal multiwavelets on \( { [-1,1] } \).Appl Comput Harmon Anal7(1):34–53

    Article  MathSciNet  MATH  Google Scholar 

  28. Hardin DP, Roach DW (1998) Multiwavelet prefilters I: orthogonal prefilterspreserving approximation order \( { p \le 2 } \).IEEE Trans Circuits Syst II. Analog Digital Signal Process 45(8):1106–1112

    MATH  Google Scholar 

  29. Heil C, Strang G, Strela V (1996) Approximation by translates of refinablefunctions.Numer Math 73(1):75–94

    Article  MathSciNet  MATH  Google Scholar 

  30. Hsung TC, Lun DPK, Ho KC (2005) Optimizing the multiwavelet shrinkagedenoising.IEEE Trans Signal Process 53(1):240–251

    Article  MathSciNet  Google Scholar 

  31. Johnson BR (2000) Multiwavelet moments and projection prefilters.IEEE TransSignal Process 48(11):3100–3108

    Article  MathSciNet  MATH  Google Scholar 

  32. Kautsky J, Turcajova R (1995) Discrete biorthogonal wavelet transforms as blockcirculant matrices.Linear Algebr Appl 223/224:393–413

    Article  MathSciNet  Google Scholar 

  33. Keinert F (2001) Raising multiwavelet approximation order through lifting.SIAM J Math Anal 32(5):1032–1049

    Article  MathSciNet  MATH  Google Scholar 

  34. Keinert F (2004) Wavelets and multiwavelets.Studiesin Advanced Mathematics. Chapman & Hall/CRC, Boca Raton

    Google Scholar 

  35. Kessler B (2005) Balanced scaling vectors using linear combinations of existingscaling vectors.In: Approximation theory, XI. Mod Methods Math. Nashboro Press, Brentwood, pp 197–210

    Google Scholar 

  36. Lawton W, Lee SL, Shen Z (1996) An algorithm for matrix extension and waveletconstruction.Math Comp 65(214):723–737

    Article  MathSciNet  MATH  Google Scholar 

  37. Lebrun J, Vetterli M (2001) High-order balanced multiwavelets: theory,factorization, and design.IEEE Trans Signal Process 49(9):1918–1930

    Article  MathSciNet  Google Scholar 

  38. Lian JA (2005) Armlets and balanced multiwavelets: flipping filterconstruction.IEEE Trans Signal Process 53(5):1754–1767

    Article  MathSciNet  Google Scholar 

  39. Lin EB, Xiao Z (2000) Multiwavelet solutions for the Dirichlet problem.In:Wavelet analysis and multiresolution methods. Lecture Notes in Pure and Appl Math, vol 212. Dekker, New York, pp241–254

    Google Scholar 

  40. Madych WR (1997) Finite orthogonal transforms and multiresolution analyses onintervals.J Fourier Anal Appl 3(3):257–294

    Article  MathSciNet  MATH  Google Scholar 

  41. Maleknejad K, Yousefi M (2006) Numerical solution of the integral equation ofthe second kind by using wavelet bases of Hermite cubic splines.Appl Math Comput 183(1):134–141

    Article  MathSciNet  MATH  Google Scholar 

  42. Massopust PR (1998) A multiwavelet based on piecewise C 1 fractal functions and related applications to differential equations.Bol Soc Mat Mex4(2):249–283

    MathSciNet  MATH  Google Scholar 

  43. Micchelli CA, Xu Y (1994) Using the matrix refinement equation for theconstruction of wavelets II: smooth wavelets on \( { [0,1] } \).In: Approximation and computation. Birkhäuser, Boston, pp 435–457

    Google Scholar 

  44. Micchelli CA, Xu Y (1994) Using the matrix refinement equation for theconstruction of wavelets on invariant sets.Appl Comput Harmon Anal 1(4):391–401

    Article  MathSciNet  MATH  Google Scholar 

  45. Miller J, Li CC (1998) Adaptive multiwavelet initialization.IEEE Trans SignalProcess 46(12):3282–3291

    Article  Google Scholar 

  46. Plonka G (1997) Approximation order provided by refinable function vectors.Constr Approx 13(2):221–244

    MathSciNet  MATH  Google Scholar 

  47. Plonka G, Strela V (1998) Construction of multiscaling functions withapproximation and symmetry.SIAM J Math Anal 29(2):481–510

    Article  MathSciNet  MATH  Google Scholar 

  48. Plonka G, Strela V (1998) From wavelets to multiwavelets.In: Mathematicalmethods for curves and surfaces, II. Vanderbilt Univ Press, Nashville, pp 375–399

    Google Scholar 

  49. Resnikoff HL, Tian J, Wells RO Jr (2001) Biorthogonal wavelet space:parametrization and factorization.SIAM J Math Anal 33(1):194–215

    Article  MathSciNet  MATH  Google Scholar 

  50. Selesnick IW (1998) Multiwavelet bases with extra approximation properties.IEEE Trans Signal Process 46(11):2898–2908

    Article  MathSciNet  Google Scholar 

  51. Selesnick IW (2000) Balanced multiwavelet bases based on symmetric FIR filters.IEEE Trans Signal Process 48(1):184–191

    Article  MATH  Google Scholar 

  52. Shen L, Tan HH (2001) On a family of orthonormal scalar wavelets andrelated balanced multiwavelets.IEEE Trans Signal Process 49(7):1447–1453

    Article  MathSciNet  Google Scholar 

  53. Shi H, Cai Y, Qiu Z (2006) On design of multiwavelet prefilters.Appl MathComput 172(2):1175–1187

    Article  MathSciNet  MATH  Google Scholar 

  54. Strang G, Nguyen T (1996) Wavelets and filter banks.Wellesley-CambridgePress, Wellesley

    MATH  Google Scholar 

  55. Strela V (1996) Multiwavelets: theory and applications.Ph D thesis,Massachusetts Institute of Technology

    Google Scholar 

  56. Strela V, Heller PN, Strang G, Topiwala P, Heil C (1999) The application ofmultiwavelet filter banks to image processing.IEEE Trans Signal Process 8:548–563

    Google Scholar 

  57. Tausch J (2002) Multiwavelets for geometrically complicated domains and theirapplication to boundary element methods.In: Integral methods in science and engineering. Birkhäuser, Boston, pp251–256

    Chapter  Google Scholar 

  58. Tham JY, Shen L, Lee SL, Tan HH (2000) A general approach for analysis andapplication of discrete multiwavelet transform.IEEE Trans Signal Process 48(2):457–464

    Article  MathSciNet  MATH  Google Scholar 

  59. Tham JY (2002) Multiwavelets and scalable video compression.Ph D thesis,National University of Singapore. Available at http://www.cwaip.nus.edu.sg/thamjy

  60. Turcajová R (1999) Construction of symmetric biorthogonal multiwavelets bylifting. In: Unser MA, Aldroubi A, Laine AF (eds) Waveletapplications in signal and image processing (SPIE), VII, vol 3813. SPIE, Bellingham, pp 443–454

    Google Scholar 

  61. von Petersdorff T, Schwab C, Schneider R (1997) Multiwavelets forsecond‐kind integral equations.SIAM J Numer Anal 34(6):2212–2227

    Article  MathSciNet  MATH  Google Scholar 

  62. VrhelMJ, Aldroubi A (1998) Projection based prefiltering for multiwavelet transforms.IEEE Trans Signal Process 46(11):3088

    Article  Google Scholar 

  63. Xia T, Jiang Q (1999) Optimal multifilter banks: design, related symmetricextension transform, and application to image compression.IEEE Trans Signal Process 47(7):1878–1889

    Article  MATH  Google Scholar 

  64. Xia XG, Geronimo JS, Hardin DP, Suter BW (1996) Design of prefilters fordiscrete multiwavelet transforms.IEEE Trans Signal Process 44(1):25–35

    Article  Google Scholar 

  65. Xia XG (1998) A new prefilter design for discrete multiwavelet transforms.IEEE Trans Signal Process 46(6):1558–1570

    Article  Google Scholar 

  66. Yang S, Peng L (2006) Construction of high order balanced multiscalingfunctions via PTST.Sci Chin Ser F 49(4):504–515

    Article  MathSciNet  MATH  Google Scholar 

  67. Yang S, Wang H (2006) High-order balanced multiwavelets with dilationfactor a.Appl Math Comput 181(1):362–369

    Article  MathSciNet  MATH  Google Scholar 

  68. Zhang JK, Davidson TN, Luo ZQ, Wong KM (2001) Design of interpolatingbiorthogonal multiwavelet systems with compact support.Appl Comput Harmon Anal 11(3):420–438

    Article  MathSciNet  MATH  Google Scholar 

  69. Zhou S, Gao X (2006) A study of orthonormal multi-wavelets on the interval.Int J Comput Math 83(11):819–837

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag

About this entry

Cite this entry

Keinert, F. (2012). Multiwavelets . In: Meyers, R. (eds) Computational Complexity. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1800-9_127

Download citation

Publish with us

Policies and ethics