Computational Complexity

2012 Edition
| Editors: Robert A. Meyers (Editor-in-Chief)


  • Fritz Keinert
Reference work entry

Article Outline


Definition of the Subject


Refinable Function Vectors

Multiresolution Approximation and Discrete Multiwavelet Transform

Moments and Approximation Order

The Discrete Multiwavelet Transform (DMWT) Algorithm

Pre- and Postprocessing and Balanced Multiwavelets

Boundary Handling


Polyphase Factorization


Two‐Scale Similarity Transform (TST)

Examples and Software

Future Directions



Approximation Order Scalar Case Scalar Wavelet Cascade Algorithm Lift Step 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. 1.
    Alpert BK (1990) Sparse representation of smooth linear operators.TechnicalReport YALEU/DCS/RR-814. Yale University, New HavenGoogle Scholar
  2. 2.
    Alpert BK, Beylkin G, Coifman R, Rokhlin V (1990) Wavelets for the fast solutionof second‐kind integral equations.Technical Report YALEU/DCS/RR-837. Yale University, New HavenGoogle Scholar
  3. 3.
    Alpert B, Beylkin G, Gines D, Vozovoi L (2002) Adaptive solution of partialdifferential equations in multiwavelet bases.J Comput Phys 182(1):149–190MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Alpert BK (1993) A class of bases in L 2 for the sparse representation of integral operators.SIAM J Math Anal24(1):246–262MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Andersson L, Hall N, Jawerth B, Peters G (1994) Wavelets on closed subsets of thereal line.In: Recent advances in wavelet analysis. Academic Press, Boston, pp 1–61Google Scholar
  6. 6.
    Attakitmongcol K, Hardin DP, Wilkes DM (2001) Multiwavelet prefilters II: optimalorthogonal prefilters.IEEE Trans Image Proc 10(10):1476–1487MATHCrossRefGoogle Scholar
  7. 7.
    Averbuch AZ, Zheludev VA (2002) Lifting scheme for biorthogonal multiwaveletsoriginated from Hermite splines.IEEE Trans Signal Process 50(3):487–500MathSciNetCrossRefGoogle Scholar
  8. 8.
    Averbuch A, Israeli M, Vozovoi L (1999) Solution of time-dependent diffusionequations with variable coefficients using multiwavelets.J Comput Phys 150(2):394–424MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Averbuch A, Braverman E, Israeli M (2000) Parallel adaptive solution ofa Poisson equation with multiwavelets.SIAM J Sci Comput 22(3):1053–1086MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Bacchelli S, Cotronei M, Lazzaro D (2000) An algebraic constructionof k‑balanced multiwavelets via the lifting scheme.Numer Algorithms23(4):329–356MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Bacchelli S, Cotronei M, Sauer T (2002) Multifilters with and withoutprefilters.BIT 42(2):231–261MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Bramble JH, Cohen A, Dahmen W, Canuto C (ed) (2003) Multiscale problems andmethods in numerical simulations. Lecture Notes in Mathematics, vol 1825. Springer, Berlin.Lectures given at the CIME Summer School held inMartina Franca, 9–15 September, 2001Google Scholar
  13. 13.
    Brislawn C (1996) Classification of nonexpansive symmetric extension transformsfor multirate filter banks.Appl Comput Harmon Anal 3(4):337–357MATHCrossRefGoogle Scholar
  14. 14.
    Bui TD, Chen G (1998) Translation-invariant denoising using multiwavelets.IEEE Trans Signal Process 46(12):3414–3420CrossRefGoogle Scholar
  15. 15.
    Burrus CS, Gopinath RA, Guo H (1998) Introduction to wavelets and wavelettransforms: a primer.Prentice Hall, New YorkGoogle Scholar
  16. 16.
    Chen Z, Micchelli CA, Xu Y (1997) The Petrov–Galerkin method for secondkind integral equations II: multiwavelet schemes.Adv Comput Math 7(3):199–233MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Cohen A, Daubechies I, Vial P (1993) Wavelets on the interval and fast wavelet transforms. Appl Comput Harmon Anal 1(1):54–81MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    DahmenW, Han B, Jia RQ, Kunoth A (2000) Biorthogonal multiwavelets on theinterval: cubic Hermite splines.Constr Approx 16(2):221–259MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Daubechies I, Sweldens W (1998) Factoring wavelet transforms into liftingsteps.J Fourier Anal Appl 4(3):247–269MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Davis GM, Strela V, and Turcajova R (2000)Multiwavelet construction via the lifting scheme.In: Wavelet analysis and multiresolution methods. Dekker, New York, pp57–79Google Scholar
  21. 21.
    Donovan GC, Geronimo JS, Hardin DP, Massopust PR (1996) Construction oforthogonal wavelets using fractal interpolation functions.SIAM J Math Anal 27(4):1158–1192MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Downie TR, Silverman BW (1998) The discrete multiple wavelet transform andthresholding methods.IEEE Trans Signal Process 46(9):2558–2561CrossRefGoogle Scholar
  23. 23.
    Efromovich S (2001) Multiwavelets and signal denoising.Sankhyā Ser A63(3):367–393MathSciNetMATHGoogle Scholar
  24. 24.
    Goh SS, Yap VB (1998) Matrix extension and biorthogonal multiwaveletconstruction.Linear Algebr Appl 269:139–157MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Goh SS, Jiang Q, Xia T (2000) Construction of biorthogonal multiwavelets usingthe lifting scheme.Appl Comput Harmon Anal 9(3):336–352MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Han B, Jiang Q (2002) Multiwavelets on the interval.Appl Comput Harmon Anal12(1):100–127MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Hardin DP, Marasovich JA (1999) Biorthogonal multiwavelets on \( { [-1,1] } \).Appl Comput Harmon Anal7(1):34–53MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Hardin DP, Roach DW (1998) Multiwavelet prefilters I: orthogonal prefilterspreserving approximation order \( { p \le 2 } \).IEEE Trans Circuits Syst II. Analog Digital Signal Process 45(8):1106–1112MATHGoogle Scholar
  29. 29.
    Heil C, Strang G, Strela V (1996) Approximation by translates of refinablefunctions.Numer Math 73(1):75–94MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Hsung TC, Lun DPK, Ho KC (2005) Optimizing the multiwavelet shrinkagedenoising.IEEE Trans Signal Process 53(1):240–251MathSciNetCrossRefGoogle Scholar
  31. 31.
    Johnson BR (2000) Multiwavelet moments and projection prefilters.IEEE TransSignal Process 48(11):3100–3108MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Kautsky J, Turcajova R (1995) Discrete biorthogonal wavelet transforms as blockcirculant matrices.Linear Algebr Appl 223/224:393–413MathSciNetCrossRefGoogle Scholar
  33. 33.
    Keinert F (2001) Raising multiwavelet approximation order through lifting.SIAM J Math Anal 32(5):1032–1049MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Keinert F (2004) Wavelets and multiwavelets.Studiesin Advanced Mathematics. Chapman & Hall/CRC, Boca RatonGoogle Scholar
  35. 35.
    Kessler B (2005) Balanced scaling vectors using linear combinations of existingscaling vectors.In: Approximation theory, XI. Mod Methods Math. Nashboro Press, Brentwood, pp 197–210Google Scholar
  36. 36.
    Lawton W, Lee SL, Shen Z (1996) An algorithm for matrix extension and waveletconstruction.Math Comp 65(214):723–737MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Lebrun J, Vetterli M (2001) High-order balanced multiwavelets: theory,factorization, and design.IEEE Trans Signal Process 49(9):1918–1930MathSciNetCrossRefGoogle Scholar
  38. 38.
    Lian JA (2005) Armlets and balanced multiwavelets: flipping filterconstruction.IEEE Trans Signal Process 53(5):1754–1767MathSciNetCrossRefGoogle Scholar
  39. 39.
    Lin EB, Xiao Z (2000) Multiwavelet solutions for the Dirichlet problem.In:Wavelet analysis and multiresolution methods. Lecture Notes in Pure and Appl Math, vol 212. Dekker, New York, pp241–254Google Scholar
  40. 40.
    Madych WR (1997) Finite orthogonal transforms and multiresolution analyses onintervals.J Fourier Anal Appl 3(3):257–294MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    Maleknejad K, Yousefi M (2006) Numerical solution of the integral equation ofthe second kind by using wavelet bases of Hermite cubic splines.Appl Math Comput 183(1):134–141MathSciNetMATHCrossRefGoogle Scholar
  42. 42.
    Massopust PR (1998) A multiwavelet based on piecewise C 1 fractal functions and related applications to differential equations.Bol Soc Mat Mex4(2):249–283MathSciNetMATHGoogle Scholar
  43. 43.
    Micchelli CA, Xu Y (1994) Using the matrix refinement equation for theconstruction of wavelets II: smooth wavelets on \( { [0,1] } \).In: Approximation and computation. Birkhäuser, Boston, pp 435–457Google Scholar
  44. 44.
    Micchelli CA, Xu Y (1994) Using the matrix refinement equation for theconstruction of wavelets on invariant sets.Appl Comput Harmon Anal 1(4):391–401MathSciNetMATHCrossRefGoogle Scholar
  45. 45.
    Miller J, Li CC (1998) Adaptive multiwavelet initialization.IEEE Trans SignalProcess 46(12):3282–3291CrossRefGoogle Scholar
  46. 46.
    Plonka G (1997) Approximation order provided by refinable function vectors.Constr Approx 13(2):221–244MathSciNetMATHGoogle Scholar
  47. 47.
    Plonka G, Strela V (1998) Construction of multiscaling functions withapproximation and symmetry.SIAM J Math Anal 29(2):481–510MathSciNetMATHCrossRefGoogle Scholar
  48. 48.
    Plonka G, Strela V (1998) From wavelets to multiwavelets.In: Mathematicalmethods for curves and surfaces, II. Vanderbilt Univ Press, Nashville, pp 375–399Google Scholar
  49. 49.
    Resnikoff HL, Tian J, Wells RO Jr (2001) Biorthogonal wavelet space:parametrization and factorization.SIAM J Math Anal 33(1):194–215MathSciNetMATHCrossRefGoogle Scholar
  50. 50.
    Selesnick IW (1998) Multiwavelet bases with extra approximation properties.IEEE Trans Signal Process 46(11):2898–2908MathSciNetCrossRefGoogle Scholar
  51. 51.
    Selesnick IW (2000) Balanced multiwavelet bases based on symmetric FIR filters.IEEE Trans Signal Process 48(1):184–191MATHCrossRefGoogle Scholar
  52. 52.
    Shen L, Tan HH (2001) On a family of orthonormal scalar wavelets andrelated balanced multiwavelets.IEEE Trans Signal Process 49(7):1447–1453MathSciNetCrossRefGoogle Scholar
  53. 53.
    Shi H, Cai Y, Qiu Z (2006) On design of multiwavelet prefilters.Appl MathComput 172(2):1175–1187MathSciNetMATHCrossRefGoogle Scholar
  54. 54.
    Strang G, Nguyen T (1996) Wavelets and filter banks.Wellesley-CambridgePress, WellesleyMATHGoogle Scholar
  55. 55.
    Strela V (1996) Multiwavelets: theory and applications.Ph D thesis,Massachusetts Institute of TechnologyGoogle Scholar
  56. 56.
    Strela V, Heller PN, Strang G, Topiwala P, Heil C (1999) The application ofmultiwavelet filter banks to image processing.IEEE Trans Signal Process 8:548–563Google Scholar
  57. 57.
    Tausch J (2002) Multiwavelets for geometrically complicated domains and theirapplication to boundary element methods.In: Integral methods in science and engineering. Birkhäuser, Boston, pp251–256CrossRefGoogle Scholar
  58. 58.
    Tham JY, Shen L, Lee SL, Tan HH (2000) A general approach for analysis andapplication of discrete multiwavelet transform.IEEE Trans Signal Process 48(2):457–464MathSciNetMATHCrossRefGoogle Scholar
  59. 59.
    Tham JY (2002) Multiwavelets and scalable video compression.Ph D thesis,National University of Singapore. Available at
  60. 60.
    Turcajová R (1999) Construction of symmetric biorthogonal multiwavelets bylifting. In: Unser MA, Aldroubi A, Laine AF (eds) Waveletapplications in signal and image processing (SPIE), VII, vol 3813. SPIE, Bellingham, pp 443–454Google Scholar
  61. 61.
    von Petersdorff T, Schwab C, Schneider R (1997) Multiwavelets forsecond‐kind integral equations.SIAM J Numer Anal 34(6):2212–2227MathSciNetMATHCrossRefGoogle Scholar
  62. 62.
    VrhelMJ, Aldroubi A (1998) Projection based prefiltering for multiwavelet transforms.IEEE Trans Signal Process 46(11):3088CrossRefGoogle Scholar
  63. 63.
    Xia T, Jiang Q (1999) Optimal multifilter banks: design, related symmetricextension transform, and application to image compression.IEEE Trans Signal Process 47(7):1878–1889MATHCrossRefGoogle Scholar
  64. 64.
    Xia XG, Geronimo JS, Hardin DP, Suter BW (1996) Design of prefilters fordiscrete multiwavelet transforms.IEEE Trans Signal Process 44(1):25–35CrossRefGoogle Scholar
  65. 65.
    Xia XG (1998) A new prefilter design for discrete multiwavelet transforms.IEEE Trans Signal Process 46(6):1558–1570CrossRefGoogle Scholar
  66. 66.
    Yang S, Peng L (2006) Construction of high order balanced multiscalingfunctions via PTST.Sci Chin Ser F 49(4):504–515MathSciNetMATHCrossRefGoogle Scholar
  67. 67.
    Yang S, Wang H (2006) High-order balanced multiwavelets with dilationfactor a.Appl Math Comput 181(1):362–369MathSciNetMATHCrossRefGoogle Scholar
  68. 68.
    Zhang JK, Davidson TN, Luo ZQ, Wong KM (2001) Design of interpolatingbiorthogonal multiwavelet systems with compact support.Appl Comput Harmon Anal 11(3):420–438MathSciNetMATHCrossRefGoogle Scholar
  69. 69.
    Zhou S, Gao X (2006) A study of orthonormal multi-wavelets on the interval.Int J Comput Math 83(11):819–837MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Fritz Keinert
    • 1
  1. 1.Iowa State UniversityAmesUSA