Skip to main content

Multi-Granular Computing and Quotient Structure

  • Reference work entry

ArticleOutline

Glossary

Definition of the Subject

Introduction

The Granularity Relation

Hierarchy

Combination

Future Directions

Acknowledgments

Bibliography

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   1,500.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Granularity:

Granularity is the relative size, scale, level of detail, or depth of penetration that characterizes an object or system.

Multi‐granular computing:

Humans are good at viewing and solving a problem at different grain‐sizes (abstraction levels) and translating from one abstraction level to the others easily. This is one of basic characteristics of human intelligence. The aim of multi‐granular computing is intended to investigate the granulation problem in human cognition and endow computers with the same capability to make them more efficient in problem solving.

Quotient set:

Given a universe X and an equivalence relation R on X, define a set \( [X]=\{[x]|x\in X\},[x]=\{y|y\sim x,y\in X\} \). [X] is called a quotient set with respect to R, or simply a quotient set.

Quotient space:

Given a topologic space \( { (X,T) } \), T is a topology on X and R is an equivalence relation on X. Define a quotient structure on [X] as \( [T]=\{u|p^{-1}(u)\in T,u\subset [X]\} \), where \( { p\colon X\to [X] } \) is a natural projection from X to [X]. Construct a topologic space \( ([X], [T]) \). Space \( ([X], [T]) \) is a quotient space corresponding to R. There are authors who keep the neighborhood system structured but remove the axioms of topology [13,14].

Quotient space model:

The quotient space model is a mathematical model to represent a problem at different grain‐sizes by using the concept of quotient space in algebra. In the model a problem (or a system) is described by a triple \( { (X,T,f) } \), with universe (domain) X, structure T and attribute f. If X represents the universe composed of the objects with the finest grain‐size, when we view the same universe X at a coarser grain‐size, we have a coarse‐grained universe denoted by [X]. Then we have a new problem space \( { ([X],[T],[f]) } \), where [X] is the quotient universe of X, [T] the corresponding quotient structure and [f] the quotient attribute. The coarse space \( { ([X],[T],[f]) } \) is called a quotient space of space \( { (X,T,f) } \). Therefore, a problem with different grain‐sizes can be represented by a family of quotient spaces.

Bibliography

  1. BargielaA, Pedrycz W (2002) Granular computing: anintroduction. Kluwer, Boston

    Google Scholar 

  2. BertinoE, Cuadra D, Martinez P (2005) An object‐relationalapproach to the representation of multi‐granularspatio‐temporal data. In: The 17th conference on advancedinformation systems engineering (CAiSE’05), Porto, 13–17June, pp 119–134

    Google Scholar 

  3. BettiniC, Dyreson CE, Evans WS, Snodgrass RT, Wang XS (1998)A glossary of time granularity concepts. In: Etzioni O,Jajodia S, Sripada S (eds) Temporal databases: research andpractice. Lecture Notes in Computer Science,vol 1399. Springer, Berlin,pp 406–413

    Chapter  Google Scholar 

  4. BettiniC, Wang XS, Jajodia S (2002) Solving multi‐granularitytemporal constraint networks. Artif Intell140:107–152

    Article  MathSciNet  MATH  Google Scholar 

  5. ChuaT-S et al (2005) TRECVID 2005 by NUS PRIS. In: TRECVID2005. NIST. http://www-nlpir.nist.gov/projects/tvpubs/tv5.papers/nus.pdf

  6. DasarathyBV (2001) Information fusion – what, where, why,when, and how? Ed Inform Fusion2(2):75–76

    Google Scholar 

  7. DempsterAP, Laird NM, Rubin DB (1977) Maximum likelihood from incompletedata using the EM algorithm (with discussion). J R Stat Soc SerB 39:1–38

    MathSciNet  MATH  Google Scholar 

  8. DingDY (2007) Research on information fusion technology and itsapplication in video content analysis. Tsinghua UniversityDissertation. (in Chinese)

    Google Scholar 

  9. EisenbergM (1974) Topology. Holt

    Google Scholar 

  10. GarlandM (1999) Multiresolution modeling: survey and futureopportunities. EUROGRAGHICS’99. State of the Art Report,September 1999

    Google Scholar 

  11. IyengarSS, Prasad L (1997) Wavelet analysis with applications to imageprocessing. CRC Press, Baca Raton

    MATH  Google Scholar 

  12. JingF et al (2005) A unified framework for image retrievalusing keyword and visual features. IEEE Trans Image Process14(7):979–989

    Article  Google Scholar 

  13. LinTY (1989) Neighborhood systems and approximation in database andknowledge base systems. In: Ras ZW (ed)Proc of the fourth internationalsymposium on methodologies of intelligent systems. Postersession. 12–15 Oct. North Holland, New York, pp 75–86

    Google Scholar 

  14. LinTY (1992) Topological and fuzzy rough sets In: Slowinski R (ed)Decision support by experience – application of therough sets theory. Kluwer, Dordrecht, pp 287–304

    Google Scholar 

  15. LinTY (2001) Granular fuzzy sets: a view from rough set andprobability theories. Int J Fuzzy Syst3(2):373–381

    MathSciNet  Google Scholar 

  16. LinTY (2005) Churn-Jung Liau granular computing and rough sets. In:Maimon O, Rokach L (eds) The Data Mining and Knowledge DiscoveryHandbook. Spriger, pp 535–561

    Google Scholar 

  17. MaesF et al (1997) Multimodality image registration by maximizationof mutual information. IEEE Trans Med Imaging16(2):187–198

    Article  Google Scholar 

  18. Nguyen SH, Skowron A, Stepaniuk J (2001) Granular computing: a rough setapproach. Comput Intell 17:514–544

    Article  MathSciNet  Google Scholar 

  19. Over P, Kraaij W, Smeaton AF (2005) TRECVID 2005 – anintroduction. In: TRECVID 2005, NIST. http://www-nlpir.nist.gov/projects/tvpubs/tv5.papers/tv5intro.pdf

  20. Pawlak Z (1998) Granularity of knowledge, indicernibility, and rough sets. In:Proc of IEEE world congress on computational intelligence,vol 1. IEEE Press, New York, pp 106–110

    Google Scholar 

  21. Shafer G (1976) A mathematical theory of evidence. Princeton UniversityPress, Princeton

    MATH  Google Scholar 

  22. Xue X et al (2005) Fudan University at TRECVID 2005. In: TRECVID2005. NIST. http://www-nlpir.nist.gov/projects/tvpubs/tv5.papers/Fudan.pdf

  23. Yuan J et al (2005) Tsinghua University at TRECVID 2005. In: TRECVID2005. NIST. http://www-nlpir.nist.gov/projects/tvpubs/tv5.papers/tsinghua.pdf

  24. Zadeh LA (1997) Towards a theory of fuzzy information granulation and itscentrality in human reasoning and fuzzy logic. Fuzzy Sets Syst 19:111–127

    Article  MathSciNet  Google Scholar 

  25. Zhang B, Zhang L (1992) Theory and applications of problem solving. Elsevier,North-Holland

    MATH  Google Scholar 

  26. Zhang L, Zhang B (2004) The quotient space theory of problemsolving. Fundament Inform 59(2,3):287–298

    MATH  Google Scholar 

  27. Zhang L, Zhang B (2005) Fuzzy reasoning model under quotient spacestructure. Inform Sci 173:353–364

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhang L, Zhang B (2007) The theory and application of problemsolving – the theory and application of quotient‐space based granular computing. Tsinghua University Publishing Co. (the second version,in Chinese) Bejing

    Google Scholar 

  29. Zhu M (2004) Recall, precision and average precision. Department of Statisticsand Actuarial Science, University of Waterloo, Waterloo

    Google Scholar 

Download references

Acknowledgments

The work issupported by the National Natural Science Foundation of Chinaunder Grant. No. 60621062, and the National Key FoundationR&D Project under Grant. No.2003CB317007,2007CB311003.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag

About this entry

Cite this entry

Zhang, L., Zhang, B. (2012). Multi-Granular Computing and Quotient Structure. In: Meyers, R. (eds) Computational Complexity. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1800-9_125

Download citation

Publish with us

Policies and ethics