Computational Complexity

2012 Edition
| Editors: Robert A. Meyers (Editor-in-Chief)

Molecular Automata

  • Joanne Macdonald
  • Darko Stefanovic
  • Milan Stojanovic
Reference work entry

Article Outline




Molecular Automata as Language Recognizers

Molecular Automata as Transducers and Controllers

Future Directions



Turing Machine Logic Gate Transition Rule Finite Automaton Full Adder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


Primary Literature

  1. 1.
    Adar R, Benenson Y, Linshiz G, Rosner A, Tishby N, Shapiro E (2004) Stochastic computing with biomolecular automata. Proc Natl Acad Sci USA (PNAS) 101(27):9960–9965CrossRefGoogle Scholar
  2. 2.
    Adleman LM (1994) Molecular computation of solutions to combinatorial problems.Science 266(5187):1021–1024CrossRefGoogle Scholar
  3. 3.
    Andrews B (2005) Games, strategies, and boolean formula manipulation. Master’s thesis, University of New MexicoGoogle Scholar
  4. 4.
    Bailly C (2003) Automata: The Golden Age, 1848–1914. Robert Hale, LondonGoogle Scholar
  5. 5.
    Barish RD, Rothemund PWK, Winfree E (2005) Two computational primitives for algorithmic self‐assembly: Copying and counting. Nano Lett 5(12):2586–2592CrossRefGoogle Scholar
  6. 6.
    Benenson Y, Adar R, Paz-Elizur T, Livneh Z, Shapiro E (2003) DNA molecule provides a computing machine with both data and fuel. Proc Natl Acad Sci USA (PNAS) 100(5):2191–2196CrossRefGoogle Scholar
  7. 7.
    Benenson Y, Gil B, Ben-Dor U, Adar R, Shapiro E (2004) An autonomous molecular computer for logical control of gene expression. Nature 429:423–429CrossRefGoogle Scholar
  8. 8.
    Benenson Y, Paz-Elizur T, Adar R, Keinan E, Livneh Z, Shapiro E (2001) Programmable and autonomous computing machine made of biomolecules. Nature 414:430–434CrossRefGoogle Scholar
  9. 9.
    Breaker RR, Joyce GF (1995) A DNA enzyme with Mg2+‐dependent RNA phosphoesterase activity. Chem Biol 2:655–660Google Scholar
  10. 10.
    Collier CP, Wong EW, Belohradský M, Raymo FM, Stoddart JF, Kuekes PJ, Williams RS, Heath JR (1999) Electronically configurable molecular-based logic gates. Science 285:391–394Google Scholar
  11. 11.
    Credi A, Balzani V, Langford SJ, Stoddart JF (1997) Logic operations at the molecular level. An XOR gate based on a molecular machine. J Am Chem Soc 119(11):2679–2681CrossRefGoogle Scholar
  12. 12.
    de Silva AP, Dixon IM, Gunaratne HQN, Gunnlaugsson T, Maxwell PRS, Rice TE (1999) Integration of logic functions and sequential operation of gates at the molecular-scale. J Am Chem Soc 121(6):1393–1394CrossRefGoogle Scholar
  13. 13.
    de Silva AP, Gunaratne HQN, McCoy CP (1993) A molecular photoionic AND gate based on fluorescent signalling. Nature 364:42–44CrossRefGoogle Scholar
  14. 14.
    de Silva AP, Gunaratne HQN, McCoy CP (1997) Molecular photoionic AND logic gates with bright fluorescence and “off-on” digital action. J Am Chem Soc 119(33):7891–7892CrossRefGoogle Scholar
  15. 15.
    de Silva AP, McClenaghan ND (2000) Proof-of-principle of molecular-scale arithmetic.J Am Chem Soc 122(16):3965–3966CrossRefGoogle Scholar
  16. 16.
    de Solla Price DJ (1964) Automata and the origins of mechanism and mechanistic philosophy. Technol Cult 5(1):9–23CrossRefGoogle Scholar
  17. 17.
    Ellenbogen JC, Love JC (2000) Architectures for molecular electronic computers: 1. Logic structures and an adder built from molecular electronic diodes.Proc IEEE 88(3):386–426CrossRefGoogle Scholar
  18. 18.
    Fu TJ, Seeman NC (1993) DNA double‐crossover molecules. Biochemistry 32:3211–3220CrossRefGoogle Scholar
  19. 19.
    Garzon M, Gao Y, Rose JA, Murphy RC, Deaton RJ, Franceschetti DR, Stevens SE Jr (1998) In vitro implementation of finite-state machines. In: Proceedings 2nd International Workshop on Implementing Automata WIA’97. Lecture Notes in Computer Science, vol 1436. Springer, London, pp 56–74Google Scholar
  20. 20.
    Gordon JM, Goldman AM, Maps J, Costello D, Tiberio R, Whitehead B (1986) Superconductin‐normal phase boundary of a fractal network in a magnetic field. Phys Rev Lett 56(21):2280–2283CrossRefGoogle Scholar
  21. 21.
    Holter NS, Lakhtakia A, Varadan VK, Varadan VV, Messier R (1986) On a new class of planar fractals: the Pascal–Sierpinski gaskets. J Phys A: Math Gen 19:1753–1759MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Huang Y, Duan X, Cui Y, Lauhon LJ, Kim KH, Lieber CM (2001) Logic gates and computation from assembled nanowire building blocks. Science 294(9):1313–1317CrossRefGoogle Scholar
  23. 23.
    LaBean TH, Yan H, Kopatsch J, Liu F, Winfree E, Reif JH, Seeman NC (2000) Construction, analysis, ligation, and self‐assembly of DNA triple crossover complexes. J Am Chem Soc 122:1848–1860Google Scholar
  24. 24.
    Lederman H, Macdonald J, Stefanovic D, Stojanovic MN (2006) Deoxyribozyme-based three-input logic gates and construction of a molecular full adder.Biochemistry 45(4):1194–1199CrossRefGoogle Scholar
  25. 25.
    Lipton RJ, Baum EB (eds) (1996) DNA Based Computers, DIMACS Workshop 1995 (Princeton University: Princeton, NJ). Series in Discrete Mathematics and Theoretical Computer Science, vol 27. American Mathematical Society, PrincetonGoogle Scholar
  26. 26.
    Macdonald J (2007) DNA-based calculators with 7-segment displays. In: The 13th International Meeting on DNA Computing, MemphisGoogle Scholar
  27. 27.
    Macdonald J, Li Y, Sutovic M, Lederman H, Pendri K, Lu W, Andrews BL, Stefanovic D, Stojanovic MN (2006) Medium scale integration of molecular logic gates in an automaton. Nano Lett 6(11):2598–2603CrossRefGoogle Scholar
  28. 28.
    Mao C (2004) The emergence of complexity: Lessons from DNA. PLoS Biology 2(12):2036–2038CrossRefGoogle Scholar
  29. 29.
    Mao C, LaBean TH, Reif JH, Seeman NC (2000) Logical computation using algorithmic self‐assembly of DNA triple‐crossover molecules. Nature 407:493–496, erratum, Nature 408 (2000), p 750CrossRefGoogle Scholar
  30. 30.
    Mealy GH (1955) A method for synthesizing sequential circuits. Bell Syst Techn J 34:1045–1079MathSciNetGoogle Scholar
  31. 31.
    Peppé R (2002) Automata and Mechanical Toys. Crowood Press, RamsburyGoogle Scholar
  32. 32.
    Pickover CA (1990) On the aesthetics of sierpinski gaskets formed from large pascal’s triangles. Leonardo 23(4):411–417CrossRefGoogle Scholar
  33. 33.
    Riskin J (2003) The defecating duck, or, the ambiguous origins of artificial life.Crit Inq 29(4):599–633CrossRefGoogle Scholar
  34. 34.
    Rothemund PWK (1996) A DNA and restriction enzyme implementation of Turing machines.In: Lipton RJ, Baum EB (eds) DNA Based Computers. American Mathematical Society, Providence, pp 75–120Google Scholar
  35. 35.
    Rothemund PWK, Papadakis N, Winfree E (2004) Algorithmic self‐assembly of DNA Sierpinski triangles. PLoS Biol 2(12):2041–2053CrossRefGoogle Scholar
  36. 36.
    Rothemund PWK, Winfree E (2000) The program-size complexity of self‐assembled squares.In: STOC’00: The 32nd Annual ACM Symposium on Theory of Computing. Association for Computing Machinery, Portland, pp 459–468Google Scholar
  37. 37.
    Santoro SW, Joyce GF (1997) A general purpose RNA‑cleaving DNA enzyme. Proc Natl Acad Sci USA (PNAS) 94:4262–4266CrossRefGoogle Scholar
  38. 38.
    Shapiro E, Karunaratne KSG (2001) Method and system of computing similar to a Turing machine. US Patent 6,266,569 B1Google Scholar
  39. 39.
    Soloveichik D, Winfree E (2005) The computational power of Benenson automata.Theoret Comput Sci 344:279–297MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    Soreni M, Yogev S, Kossoy E, Shoham Y, Keinan E (2005) Parallel biomolecular computation on surfaces with advanced finite automata. J Am Chem Soc 127(11):3935–3943CrossRefGoogle Scholar
  41. 41.
    Stojanovic MN, de Prada P, Landry DW (2001) Catalytic molecular beacons.Chem Bio Chem 2(6):411–415CrossRefGoogle Scholar
  42. 42.
    Stojanovic MN, Kolpashchikov D (2004) Modular aptameric sensors. J Am Chem Soc 126(30):9266–9270CrossRefGoogle Scholar
  43. 43.
    Stojanovic MN, Mitchell TE, Stefanovic D (2002) Deoxyribozyme‐based logic gates.J Am Chem Soc 124(14):3555–3561CrossRefGoogle Scholar
  44. 44.
    Stojanovic MN, Semova S, Kolpashchikov D, Morgan C, Stefanovic D (2005) Deoxyribozyme‐based ligase logic gates and their initial circuits. J Am Chem Soc 127(19):6914–6915CrossRefGoogle Scholar
  45. 45.
    Stojanovic MN, Stefanovic D (2003) Deoxyribozyme‐based half adder. J Am Chem Soc 125(22):6673–6676CrossRefGoogle Scholar
  46. 46.
    Stojanovic MN, Stefanovic D (2003) A deoxyribozyme‐based molecular automaton. Nature Biotechnol 21(9):1069–1074CrossRefGoogle Scholar
  47. 47.
    Wang H (1963) Dominoes and the AEA case of the decision problem. In: Fox J (ed) Mathematical Theory of Automata. Polytechnic Press, New York, pp 23–55Google Scholar
  48. 48.
    Winfree E (1996) On the computational power of DNA annealing and ligation. In: Lipton RJ, Baum EB (eds) (1996) DNA Based Computers. American Mathematical Society, Providence, pp 199–221Google Scholar
  49. 49.
    Winfree E (2006) Self-healing tile sets. In: Chen J, Jonoska N, Rozenberg G (eds) (2006) Natural Computing. Springer, Berlin, pp 55–78Google Scholar
  50. 50.
    Winfree E, Yang X, Seeman NC (1999) Universal computation via self-assembly of DNA: Some theory and experiments. In: Landweber LF, Baum EB (eds) DNA Based Computers II, DIMACS Workshop 1996 (Princeton University: Princeton, NJ), American Mathematical Society, Princeton. Series in Discrete Mathematics and Theoretical Computer Science, vol 44. pp 191–213; Errata:
  51. 51.
    Yurke B, Mills Jr AP, Cheng SL (1999) DNA implementation of addition in which the input strands are separate from the operator strands. Bio Systems 52(1–3):165–174CrossRefGoogle Scholar

Books and Reviews

  1. 52.
    Chen J, Jonoska N, Rozenberg G (eds) (2006) Natural Computing. Springer, BerlinGoogle Scholar
  2. 53.
    Lewis HR, Papadimitriou CH (1981) Elements of the Theory of Computation. Prentice-Hall, Englewood CliffsMATHGoogle Scholar
  3. 54.
    Seeman NC (2002) It started with Watson and Crick, but it sure didn’t end there: Pitfalls and possibilities beyond the classic double helix. Nat Comput Int J 1(1):53–84MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Joanne Macdonald
    • 1
  • Darko Stefanovic
    • 2
  • Milan Stojanovic
    • 1
  1. 1.National Chemical Bonding Center: Center for Molecular Cybernetics, Division of Experimental Therapeutics, Department of MedicineColumbia UniversityNew YorkUSA
  2. 2.National Chemical Bonding Center: Center for Molecular Cybernetics, Department of Computer ScienceUniversity of New MexicoAlbuquerqueUSA