Skip to main content

Inspection Games

  • Reference work entry
Computational Complexity

Article Outline

Glossary

Definition

Introduction

Selected Inspection Models

Future Directions

Bibliography

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,500.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Noncooperative game :

An n‑person noncooperative game in normal or strategic form is a list of actions, called pure strategies, for each of n players, together with a rule for specifying each player's payoff (utility) when every player has chosen a specific action. Each player seeks to maximize her own payoff.

Mixed strategy :

A mixed strategy for a player in a noncooperative game is a probability distribution over that player's pure strategies.

Extensive form:

The extensive form of a noncooperative game is a graphical representation which describes a succession of moves by different players, including chance moves, and which can handle quite intricate information patterns.

Zero‐sum game :

A zero-sum game is a noncooperative game in which the payoffs of all players sum to zero for any specific combination of pure strategies.

Nash equilibrium :

A Nash equilibrium in a noncooperative game is a specification of strategies for all players with the property that no player has an incentive to deviate unilaterally from her specified strategy. A solution of a noncooperative game is a Nash equilibrium which is either unique, or which, for some reason, has been selected among alternative equilibria.

Saddle point :

A saddle point is a Nash equilibrium of a two‐person zero‐sum game. The value of the game is the (unique) equilibrium payoff to the first player.

Utility :

Utilities are sequences of numbers assigned to the outcomes of any strategy combination which mirror the order of preferences of each player and which fulfill the axioms of von Neumann and Morgenstern.

Deterrence :

In an inspection game, deterrence is said to be achieved by a Nash equilibrium in which the inspectee behaves legally, or in accordance with the agreed rule.

Inspector leadership :

Leadership in inspection games is a strategic concept by which, through persuasive announcement of her strategy, the inspector can achieve deterrence.

Verification :

Verification is the independent confirmation by an inspector of the information reported by an inspectee. It is used most commonly in the context of arms control and disarmament agreements.

Bibliography

  1. Avenhaus R (1997) Entscheidungstheoretische Analyse der Fahrgast‐Kontrollen. Der Nahverkehr 9:27

    Google Scholar 

  2. Avenhaus R, Canty MJ (1989) Re‐examination of the IAEA formula for stratified attribute sampling. Proc 11th ESARDA Symposium, JRC, Ispra, pp 351–356

    Google Scholar 

  3. Avenhaus R, Canty MJ (1996) Compliance Quantified. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  4. Avenhaus R, Canty MJ (2005) Playing for time: a sequential inspection game. Eur J Oper Res 167(2):474–492

    Article  MathSciNet  Google Scholar 

  5. Avenhaus R, Jaech JL (1981) On subdividing material balances in time and/or space. J Inst Nucl Mater Manag IV(3):24–33

    Google Scholar 

  6. Avenhaus R, Okada A, Zamir S (1991) Inspector leadership with incomplete information. In: Selten R (ed) Game equilibrium models, vol IV. Springer, Heidelberg, pp 319–361

    Chapter  Google Scholar 

  7. Avenhaus R, Canty MJ, Kilgour DM, von Stengel B, Zamir S (1996) Inspection games in arms control. Eur J Oper Res 90:383–394

    Article  MATH  Google Scholar 

  8. Avenhaus R, von Stengel B, Zamir S (2002) Inspection games. In: Aumann R, Hart S (ed) Handbook of game theory. Elsevier, Amsterdam, pp 1947–1987

    Google Scholar 

  9. Baiman S (1982) Agency research in managerial accouting: a survey. J Account Lit 1:154–213

    Google Scholar 

  10. Baston VJ, Bostock FA (1991) A remark on the customs smuggler game. Nav Res Logist 41:287–293

    MathSciNet  Google Scholar 

  11. Bierlein D (1968) Direkte Überwachungssysteme. Oper Res Verfahr 6:57–68

    Google Scholar 

  12. Bierlein D (1969) Auf Bilanzen und Inventuren basierenden Safeguards‐Systeme. Oper Res Verfahr 6:36–43

    Google Scholar 

  13. Borch K (1990) Economics of insurance. North‐Holland, Amsterdam

    Google Scholar 

  14. Cavasoglu H, Raghunatahan S (2004) Configuration of detection software: a comparison of decision and game theory. Decis Anal 1:131–148

    Article  Google Scholar 

  15. Cook J, Nadeau L, Thomas LC (1997) Does cooperation in auditing matter? a comparison of a non‐cooperative and a cooperative game model of auditing. Eur J Oper Res 103:470–482

    Article  MATH  Google Scholar 

  16. Derman C (1961) On minimax surveillance schedules. Nav Res Logist Quaterly 8:415–419

    Article  MATH  Google Scholar 

  17. Diamond H (1982) Minimax policies for unobservable inspections. Math Oper Res 7(1):139–153

    Article  MathSciNet  MATH  Google Scholar 

  18. Dresher M (1962) A sampling inspection problem in arms control agreements: a game theoretical analysis. Memorandum RM-2972-ARPA. RAND Corporation, Santa Monica

    Google Scholar 

  19. Dye RA (1986) Optimal monitoring policies in agencies. RAND J Econ 17:339–350

    Article  Google Scholar 

  20. Ferguson TS, Melolidakis C (1998) On the inspection game. Nav Res Logist 45:327–334

    Article  MathSciNet  MATH  Google Scholar 

  21. Garnaev AY (1991) A generalized inspection game. Nav Res Logist 28:171–188

    Google Scholar 

  22. Goutal P, Garnaev A, Garnaeva G (1997) On the infiltration game. Int J Game Theory 26(2):215–221

    Article  MathSciNet  MATH  Google Scholar 

  23. Höpfinger E (1971) A game‐theoretic analysis of an inspection problem. University of Karlsruhe. (unpublished manuscript)

    Google Scholar 

  24. Höpfinger E (1974) Zuverlässige Inspektionsstrategien. Z Wahrscheinlichkeitstheorie Verwandte Geb 31:35–46

    Google Scholar 

  25. Hozaki R, Kuhdoh D, Komiya T (2006) An inspection game: taking account of fulfillment probabilities of players. Nav Res Logist 53:761–771

    Article  Google Scholar 

  26. IAEA (1972) The structure and content of agreements between the agency and states required in connection with the treaty on the non‐proliferation of nuclear weapons. IAEA, Vienna, INF/CIRC 153 (corrected)

    Google Scholar 

  27. IAEA (1997) Model protocol additional to the Agreement(s) between state(s) and the international atomic energy agency for the application of safeguards. IAEA, Vienna, INF/CIRC 140

    Google Scholar 

  28. Kanodia CS (1985) Stochastic and moral hazard. J Account Res 23:175–293

    Article  Google Scholar 

  29. Kilgour DM (1992) Site selection for on-site inspection in arms control. Arms Control 13:439–462

    Article  Google Scholar 

  30. Krieger T (2008) On the asymptotic behavior of a discrete time inspection game. Math Model Anal 13(1):37–46

    Article  MathSciNet  MATH  Google Scholar 

  31. Kuhn HW (1953) Extensive games and the problem of information. In: Kuhn HW, Tucker AW (eds) Contributions to the theory of Games, vol II. Princeton University Press, Princeton, pp 193–216

    Google Scholar 

  32. Maschler M (1966) A price leadership method for solving the inspector's non‐constant‐sum game. Nav Res Logist 13:11–33

    Article  MATH  Google Scholar 

  33. Maschler M (1967) The inspector´s non‐constant‐sum‐game: its dependence on a system of detectors. Nav Res Logist 14:275–290

    Article  MATH  Google Scholar 

  34. Morris P (1994) Introduction to game theory. Springer, New York

    Book  MATH  Google Scholar 

  35. Nash JF (1951) Non‐cooperative games. Ann Math 54:286–295

    Article  MathSciNet  MATH  Google Scholar 

  36. O'Neill B (1994) Game theory models of peace and war. In: Aumann R, Hart S (eds) Handbook of game theory. Elsevier, Amsterdam, pp 995–1053

    Google Scholar 

  37. Ostrom E, Gardner R, Walker J (1994) Rules, games and common pool resources. University of Michigan Press, Ann Arbor

    Google Scholar 

  38. Owen G (1968) Game theory. W. B. Saunders, Philadelphia

    Google Scholar 

  39. Pavlovic L (2002) More on the search for an infiltrator. Nav Res Logist 49:1–14

    Article  MathSciNet  Google Scholar 

  40. Rinderle K (1996) Mehrstufige sequentielle Inspektionsspiele mit statistischen Fehlern erster und zweiter Art. Kovac, Hamburg

    Google Scholar 

  41. Rohatgi VK (1976) An introduction to probability theory and mathematical statistics. Wiley, New York

    MATH  Google Scholar 

  42. Rothenstein D, Zamir S (2002) Imperfect inspection games over time. Ann Oper Res 109:175–192

    Article  MathSciNet  MATH  Google Scholar 

  43. Sakaguchi M (1994) A sequential game of multi‐opportunity infiltration. Math Jpn 39:157–166

    MathSciNet  MATH  Google Scholar 

  44. Schelling TC (1960) The strategy of conflict. Harvard University Press, Cambridge

    Google Scholar 

  45. Simaan M, Cruz JB (1973) On the Stackelberg strategy in nonzero‐sum games. J Optim Theory Appl 11(5):533–555

    Article  MathSciNet  MATH  Google Scholar 

  46. Stewart KB (1971) A cost‐effectiveness approach to inventory verification. Proc of the IAEA Symposium on Safeguards Techniques, vol II. International Atomic Energy Agency, Vienna, pp 387–409

    Google Scholar 

  47. Thomas MU, Nisgav Y (1976) An infiltration game with time‐dependent payoff. Nav Res Logist 23:297–320

    Article  MATH  Google Scholar 

  48. von Neumann J, Morgenstern O (1947) Theory of games and economic behavior. Princeton University Press, Princeton

    MATH  Google Scholar 

  49. von Stackelberg H (1934) Marktform und Gleichgewicht. Springer, Vienna

    Google Scholar 

  50. von Stengel B (1991) Recursive inspection games, Report No. S 9106. Computer Science Faculty, Armed Forces University Munich

    Google Scholar 

  51. Wilks TJ, Zimbelman MF (2004) Using game theory and strategic reasoning concepts to prevent and detect fraud. Account Horiz 18(3):173–184

    Article  Google Scholar 

  52. Wölling A (2002) Das Führerschaftsprinzip bei Inspektionsspielen. Kovac, Hamburg

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag

About this entry

Cite this entry

Avenhaus, R., Canty, M.J. (2012). Inspection Games. In: Meyers, R. (eds) Computational Complexity. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1800-9_103

Download citation

Publish with us

Policies and ethics