Encyclopedia of Metalloproteins

2013 Edition
| Editors: Robert H. Kretsinger, Vladimir N. Uversky, Eugene A. Permyakov

Bacterial Tellurite Processing Proteins

  • Raymond J. Turner
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-1533-6_552



Tellurite processing proteins from bacteria are those that have been shown to have some biochemical activity and or transformational effect on the tellurite oxyanion (TeO32−).


Tellurite resistance determinants (groups of genes or an operon specifically responsible) have been isolated and characterized by a number of groups. The Ter genes first appeared associated with conjugated plasmids and were described in the 1970s (reviewed by Walter and Taylor 1992). However, there have now been many physiological studies that have identified genes, and/or their gene product, that display a basal activity responsible for tellurite oxyanion processing and in many cases detoxification (Zannoni et al. 2008; Chasteen et al. 2009; Turner et al. 2011). It is also not unusual to find multiple genes within a given bacterium that upon deletion, or overexpression, display a...

This is a preview of subscription content, log in to check access.


  1. Araya MA, Tantaleán JC, Pérez JM, Fuentes DE, Calderón IL, Saavedra CP, Burra R, Chasteen TG, Vásquez CC (2009) Cloning, purification and characterization of Geobacillus stearothermophilus V uroporphyrinogen-III C-methyltransferase: evaluation of its role in resistance to potassium telluirte in Escherichia coli. Res Microbiol 160:125–133PubMedCrossRefGoogle Scholar
  2. Arenas FA, Covarrubias PC, Sandovai JM, Perez-Donoso JM, Imlay JA, Vasquez CC (2011) The Escherichia coli BtuE protein functions as a resistance determinant against reactive oxygen species. PLoS One 6:e15979PubMedCrossRefGoogle Scholar
  3. Avazeri C, Turner RJ, Pommier J, Weiner JH, Giordano G, Vermeglio A (1997) Tellurite and selenate reductase activity of nitrate reductases from Escherichia coli: correlation with tellurite resistance. Microbiology 143:1181–1189PubMedCrossRefGoogle Scholar
  4. Borghese R, Zannoni D (2010) Acetate permease (ActP) is responsible for tellurite (TeO32−) uptake and resistance in cells of the facultative phototroph Rhodobacter capsulatus. Appl Environ Microbiol 76:942–944PubMedCrossRefGoogle Scholar
  5. Borsetti F, Francia F, Turner RJ, Zannoni D (2007) The thiol:disulfide oxidoreductase DsbB mediates the oxidizing effects of the toxic metalloid tellurite (TeO32-) on the plasma membrane redox system of the facultative phototroph Rhodobacter capsulatus. J Bacteriol 189:851–859PubMedCrossRefGoogle Scholar
  6. Calderon IL, Arenas FA, Perez JM, Fuentes DE, Araya MA, Saavedra DP, Tantalean JC, Pichuantes SE, Youderian PA, Vasquez CC (2006) Catalases are NAD(P)H-dependent tellurite reductases. PLoS One 20:e70CrossRefGoogle Scholar
  7. Chasteen TG, Fuentes DE, Tantalean JC, Vasquez CC (2009) Tellurite: history, oxidative stress, and molecular mechanisms of resistance. FEMS Microbiol Rev 33:820–832PubMedCrossRefGoogle Scholar
  8. Harrison JJ, Tremaroli V, Stan MA, Chan CS, Vacchi-Suzzi C, Heyne BJ, Parsek MR, Ceri H, Turner RJ (2009) Chromosomal antioxidant genes have metal ion-specific roles as determinants of bacterial metal tolerance. Environ Microbiol 11:2491–2509PubMedCrossRefGoogle Scholar
  9. Perez JM, Arenas FA, Pradenas GA, Sandoval JM, Vasquez CC (2008) Escherichia coli YqhD exibits aldehyde reductase activity and protects from the harmful effect of lipid peroxidation-derived aldehydes. J Biol Chem 283:7346–7353PubMedCrossRefGoogle Scholar
  10. Shoji S, Janssen BD, Hayes CS, Fredrick K (2010) Translation factor LepA contributes to tellurite resistance in Escherichia coli but plays no apparent role in the fidelity of protein synthesis. Biochimie 92:157–163PubMedCrossRefGoogle Scholar
  11. Tantalean JC, Araya MA, Saavedra CP, Fuentes DE, Perez JM, Calderon IL, Youderian P, Vasquez CC (2003) The Geobacillus stearothermophilus V iscS gene, encoding cysteine desulfurase, confers resistance to potassium tellurite in Escherichia coli K-12. J Bacteriol 185:5831–5837PubMedCrossRefGoogle Scholar
  12. Tremaroli V, Workentine ML, Weljie AM, Vogel HJ, Ceri H, Viti C, Tatti E, Zhang P, Hynes AP, Turner RJ, Zannoni D (2009) Metabolomic investigation of the bacterial response to a metal challenge. Appl Environ Microbiol 75:719–728PubMedCrossRefGoogle Scholar
  13. Turner RJ, Weiner JH, Taylor DE (1995) The tellurite resistance determinants tehAtehB and klaAklaBtelB have different biochemical requirements. Microbiology 141:3133–3140PubMedCrossRefGoogle Scholar
  14. Turner RJ, Weiner JH, Taylor DE (1998) Selenium metabolism in Escherichia coli. Biometals 11:223–227PubMedCrossRefGoogle Scholar
  15. Turner RJ, Weiner JH, Taylor DE (1999) Tellurite-mediated thiol oxidation in Escherichia coli. Microbiology 145:2549–2557PubMedGoogle Scholar
  16. Turner RJ, Borghese R, Zannoni D (2011) Microbial reduction of tellurium metalloids as a tool in biotechnology. Biotech Adv. doi 10.1016/j.biotechadv.2011.08.018 (in press)Google Scholar
  17. Walter EG, Taylor DE (1992) Plasmid-mediated resistance to tellurite: expressed and cryptic. Plasmid 27:52–64PubMedCrossRefGoogle Scholar
  18. Zannoni D, Borsetti F, Harrison JJ, Turner RJ (2008) The bacterial response to the chalcogen metalloids Se and Te. Adv Microbial Physiol 53:1–71CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Biological SciencesUniversity of CalgaryCalgaryCanada