Skip to main content

Boron, Biologically Active Compounds

  • Reference work entry
  • 223 Accesses

Synonyms

AI-2 – autoinducer 2; BOR1 – borate transporter protein; RGII – rhamnogalacturonan II

Definition

Boron-containing compounds are primarily utilized by bacteria as quorum autoinducers and by plants as components of the cell wall. Many synthetic organoboron compounds are used as enzyme inhibitors.

Introduction

Boron is a ubiquitous element in rocks, soil, and water; its average concentration ranging from 1 mg/kg in water to 100 mg/kg in rocks. Boron is electron-poor and prefers to form tetracoordinate complexes with “hard” nucleophiles. In physiological environment, it is present in +3 oxidation state, usually in the form of borate anion or borate esters. Borate anions form stable complexes with organic acids, polysaccharides, and other biopolymers. Usually borate complexes two hydroxyl groups (either a diol or a hydroxycarboxylic acid) to form a borate diester. Since boron can bind four ligands, in many cases, borate esters cross-link two organic molecules together.

Boron in...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Armstrong TA, Spears JW, Crenshaw TD, Nielsen FH (2000) Boron supplementation of a semipurified diet for weanling pigs improves feed efficiency and bone strength characteristics and alters plasma lipid metabolites. J Nutr 130:2575–2581

    PubMed  CAS  Google Scholar 

  • Brown PH, Bellaloui N, Wimmer MA, Bassil ES, Ruiz JH, Pfeffer H, Dannel F, Romheld V (2002) Boron in plant biology. Plant Biol 4:205–223

    Article  CAS  Google Scholar 

  • Chen TS, Chang CJ, Floss HG (1980) Biosynthesis of the boron-containing antibiotic aplasmomycin. Nuclear magnetic resonance analysis of aplasmomycin and desboroaplasmomycin. J Antibiot (Tokyo) 33:1316–1322

    Article  CAS  Google Scholar 

  • Chen X, Schauder S, Potier N, Van Dorsselaer A, Pelczer I, Bassler BL, Hughson FM (2002) Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415:545–549

    Article  PubMed  CAS  Google Scholar 

  • Dembitsky VM, Al Quntar AA, Srebnik M (2011) Natural and synthetic small boron-containing molecules as potential inhibitors of bacterial and fungal quorum sensing. Chem Rev 111:209–237

    Article  PubMed  CAS  Google Scholar 

  • Federle MJ (2009) Autoinducer-2-based chemical communication in bacteria: complexities of interspecies signaling. Contrib Microbiol 16:18–32

    Article  PubMed  CAS  Google Scholar 

  • Fort DJ, Rogers RL, McLaughlin DW, Sellers CM, Schlekat CL (2002) Impact of boron deficiency on Xenopus laevis: a summary of biological effects and potential biochemical roles. Biol Trace Elem Res 90:117–142

    Article  PubMed  CAS  Google Scholar 

  • Hodgkinson JT, Welch M, Spring DR (2007) Learning the language of bacteria. ACS Chem Biol 2:715–717

    Article  PubMed  CAS  Google Scholar 

  • Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199

    Article  PubMed  CAS  Google Scholar 

  • O'Neill MA, Ishii T, Albersheim P, Darvill AG (2004) Rhamnogalacturonan II: structure and function of a borate cross-linked cell wall pectic polysaccharide. Annu Rev Plant Biol 55:109–139

    Article  PubMed  CAS  Google Scholar 

  • Pellerin P, O'Neill MA (1998) The interaction of the pectic polysaccharide Rhamnogalacturonan II with heavy metals and lanthanides in wines and fruit juices. Analusis 26:32–36

    Article  Google Scholar 

  • Rock FL, Mao W, Yaremchuk A, Tukalo M, Crepin T, Zhou H, Zhang YK, Hernandez V, Akama T, Baker SJ et al (2007) An antifungal agent inhibits an aminoacyl-tRNA synthetase by trapping tRNA in the editing site. Science 316:1759–1761

    Article  PubMed  CAS  Google Scholar 

  • Takano J, Noguchi K, Yasumori M, Kobayashi M, Gajdos Z, Miwa K, Hayashi H, Yoneyama T, Fujiwara T (2002) Arabidopsis boron transporter for xylem loading. Nature 420:337–340

    Article  PubMed  CAS  Google Scholar 

  • Vithana EN, Morgan P, Sundaresan P, Ebenezer ND, Tan DT, Mohamed MD, Anand S, Khine KO, Venkataraman D, Yong VH et al (2006) Mutations in sodium-borate cotransporter SLC4A11 cause recessive congenital hereditary endothelial dystrophy (CHED2). Nat Genet 38:755–757

    Article  PubMed  CAS  Google Scholar 

  • Xavier KB, Bassler BL (2005) Regulation of uptake and processing of the quorum-sensing autoinducer AI-2 in Escherichia coli. J Bacteriol 187:238–248

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid Breydo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Breydo, L. (2013). Boron, Biologically Active Compounds. In: Kretsinger, R.H., Uversky, V.N., Permyakov, E.A. (eds) Encyclopedia of Metalloproteins. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1533-6_483

Download citation

Publish with us

Policies and ethics