Skip to main content

Barium and Protein–RNA Interactions

  • Reference work entry
Encyclopedia of Metalloproteins

Synonyms

Metal-ion-mediated protein–nucleic acid interactions; Role of metal ions in protein–nucleic acid complexes

Definition

Genomic studies are providing researchers with a potentially complete list of the molecular components present in living systems. It is now obvious that several metal ions are essential to life. More specifically, biological macromolecules (proteins and nucleic acids) that require metal ions to perform their physiological functions are widespread in all organisms. Here, we explored the importance and involvement of one of the alkali earth metals, barium, in the biological system. Based on structural and functional analyses, we clearly demonstrated how the divalent metal ions produce the structural rearrangements that are required for hut mRNA recognition. The applications and health risks of barium metal ions are also discussed.

General Background on Barium Metal

The chemical element barium is the 56th element in the chemical periodic table with the symbol of Ba...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antson AA, Dodson EJ, Dodson G, Greaves RB, Chen XP, Gollnick P (1999) Structure of the trp RNA-binding attenuation protein, TRAP, bound to RNA. Nature 401:235–242

    Article  PubMed  CAS  Google Scholar 

  • Antson AA, Otridge J, Brzozowski AM, Dodson EJ, Dodson GG, Wilson KS, Smith TM, Yang M, Kurecki T, Gollnick P (1995) The structure of trp RNA-binding attenuation protein. Nature 374:693–700

    Article  PubMed  CAS  Google Scholar 

  • Barium (2001) In wikipedia, the free encyclopedia. Retrieved 20 Apr 2011, from http://en.wikipedia.org/wiki/Barium

  • Berman HM, Battistuz T, Bhat TN, Bluhm WF, Bourne PE, Burkhardt K, Feng Z, Gilliland GL, Iype L, Jain S, Fagan P, Marvin J, Padilla D, Ravichandran V, Schneider B, Thanki N, Weissig H, Westbrook JD, Zardecki C (2002) The protein data bank. Acta Crystallogr D Biol Crystallogr 58:899–907

    Article  PubMed  CAS  Google Scholar 

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res. 28:235–242

    Article  PubMed  CAS  Google Scholar 

  • Essen L-O, Perisic O, Lynch DE, Katan M, Williams RL (1997) A ternary metal binding site in the C2 domain of phosphoinositide-specific phospholipase C-δ1. Biochemistry 36:2753–2762

    Article  PubMed  CAS  Google Scholar 

  • Gollnick P, Babitzke P (2002) Transcription attenuation. Biochim Biophys Acta 1577:240–250

    Article  PubMed  CAS  Google Scholar 

  • Gopinath SCB, Balasubramanian D, Kumarevel TS, Misono TS, Mizuno H, Kumar PKR (2008) Insights into anti-termination regulation of the hut operon in Bacillus subtilis: importance of the dual RNA-binding surfaces of HutP. Nucleic Acids Res 36:3463–3473

    Article  PubMed  CAS  Google Scholar 

  • Herzfeld J, Griffin RG, Haberkorn RA (1978) 31P chemical-shift tensors in barium diethyl phosphate and urea-phosphoric acid: model compounds for phospholipid head-group studies. Biochemistry 17:2711–2718

    Article  PubMed  CAS  Google Scholar 

  • Kumar PKR, Kumarevel TS, Mizuno H (2006) Structural basis of HutP-mediated transcription anti-termination. Curr Opin Struct Biol 16:18–26

    Article  PubMed  CAS  Google Scholar 

  • Kumarevel TS (2007) Structural insights of HutP-mediated regulation of transcription of the hut operon in Bacillus subtilis. Biophys Chem 128:1–12

    Article  PubMed  CAS  Google Scholar 

  • Kumarevel TS, Fujimoto Z, Padmanabhan B, Oda M, Nishikawa S, Mizuno H, Kumar PKR (2002) Crystallization and preliminary X-ray diffraction studies of HutP protein: an RNA-binding protein that regulates the transcription of hut operon in Bacillus subtilis. J Struct Biol 138:237–240

    Article  PubMed  CAS  Google Scholar 

  • Kumarevel TS, Mizuno H, Kumar PKR (2003) Allosteric activation of HutP protein, that regulates transcription of hut operon in Bacillus subtilis, mediated by various analogs of histidine. Nucleic Acids Res Suppl 3:199–200

    Article  PubMed  CAS  Google Scholar 

  • Kumarevel TS, Fujimoto Z, Karthe P, Oda M, Mizuno H, Kumar PKR (2004a) Crystal structure of activated HutP; an RNA binding protein that regulates transcription of the hut operon in Bacillus subtilis. Structure 12:1269–1280

    Article  PubMed  CAS  Google Scholar 

  • Kumarevel TS, Fujimoto Z, Mizuno H, Kumar PKR (2004b) Crystallization and preliminary X-ray diffraction studies of the metal-ion-mediated ternary complex of the HutP protein with L-histidine and its cognate RNA. BBA- Prot Proteomics 1702:125–128

    Article  CAS  Google Scholar 

  • Kumarevel TS, Gopinath SCB, Nishikawa S, Mizuno H, Kumar PKR (2004c) Identification of important chemical groups of the hut mRNA for HutP interactions that regulate the hut operon in Bacillus subtilis. Nucleic Acids Res 32:3904–3912

    Article  PubMed  CAS  Google Scholar 

  • Kumarevel TS, Mizuno H, Kumar PKR (2005a) Structural basis of HutP-mediated anti-termination and roles of the Mg2+ ion and L-histidine ligand. Nature 434:183–191

    Article  PubMed  CAS  Google Scholar 

  • Kumarevel TS, Mizuno H, Kumar PKR (2005b) Characterization of the metal ion binding site in the anti-terminator protein, HutP, of Bacillus subtilis. Nucleic Acids Res 33:5494–5502

    Article  PubMed  CAS  Google Scholar 

  • Oda M, Katagai T, Tomura D, Shoun H, Hoshino T, Furukawa K (1992) Analysis of the transcriptional activity of the hut promoter in Bacillus subtilis and identification of a cis-acting regulatory region associated with catabolite repression downstream from the site of transcription. Mol Microbiol 6:2573–2582

    Article  PubMed  CAS  Google Scholar 

  • Oda M, Kobayashi N, Ito A, Kurusu Y, Taira K (2000) cis-acting regulatory sequences for antitermination in the transcript of the Bacillus subtilis hut operon and histidine-dependent binding of HutP to the transcript containing the regulatory sequences. Mol Microbiol 35:1244–1254

    Article  PubMed  CAS  Google Scholar 

  • Snyder S, Kim D, McIntosh TJ (1999) Lipopolysaccharide Bilayer structure: effect of chemotype, core mutations, divalent cations, and temperature. Biochemistry 38:10758–10767

    Article  PubMed  CAS  Google Scholar 

  • Winter M, The periodic table on the web “WebElements™.” Source: WebElements http://www.webelements.com/

  • Yanofsky C (2000) Transcription attenuation: once viewed as a novel regulatory strategy. J Bacteriol 182:1–8

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thirumananseri Kumarevel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Kumarevel, T. (2013). Barium and Protein–RNA Interactions. In: Kretsinger, R.H., Uversky, V.N., Permyakov, E.A. (eds) Encyclopedia of Metalloproteins. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1533-6_169

Download citation

Publish with us

Policies and ethics