Encyclopedia of Metalloproteins

2013 Edition
| Editors: Robert H. Kretsinger, Vladimir N. Uversky, Eugene A. Permyakov

Rubredoxin, Interaction with Germanium

  • Griselda Hernández
  • David M. LeMaster
  • Janet S. Anderson
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-1533-6_124



The tetracysteine metal coordination site of the rubredoxins from the eubacterium Clostridium pasteurianum and the hyperthermophilic archaeon Pyrococcus furiosus forms kinetically stable coordination with the inorganic Ge(IV) ion.

Clinical Toxicity of Inorganic Germanium Complexes

Inorganic germanium(IV) forms coordination complexes with a wide range of O, N, and S-bearing ligands (Holloway and Melnik 2001). Elsewhere in this volume, the potential utility of a small molecule germanium complex as a radioprotectant for whole body γ-irradiation treatment is considered. Unfortunately, during the past several decades, the clinical relevance of germanium ion coordination has been dominated by the marketing of elixirs containing citrate and lactate coordination complexes of inorganic Ge(IV) that are proposed to treat numerous types of severe maladies (Tao and Bolger 1997). A number of fatalities have resulted, primarily due to...

This is a preview of subscription content, log in to check access.


  1. Dauter Z, Wilson KS, Sieker LC, Moulis JM, Meyer J (1996) Zinc- and iron-rubredoxins from Clostridium pasteurianum at atomic resolution: a high precision model of a ZnS4 coordination unit in a protein. Proc Natl Acad Sci USA 93:8836–8840PubMedCrossRefGoogle Scholar
  2. Holloway CE, Melnik M (2001) Germanium coordination compounds: classification and analysis of crystallographic and structural data. Main Group Met Chem 24:681–726Google Scholar
  3. LeMaster DM, Anderson JS, Hernández G (2006a) Role of native-state structure in rubredoxin native-state hydrogen exchange. Biochemistry 45:9956–9963PubMedCrossRefGoogle Scholar
  4. LeMaster DM, Minnich M, Parsons PJ, Anderson JS, Hernández G (2006b) Tetrathiolate coordination of germanium(IV) in a protein active site. J Inorg Biochem 100:1410–1412PubMedCrossRefGoogle Scholar
  5. Maher M, Cross M, Wilce MCJ, Guss JM, Wedd AG (2004) Metal-substituted derivatives of the rubredoxin from Clostridium pasteurianum. Acta Crystallogr D 60:298–303PubMedCrossRefGoogle Scholar
  6. Min TP, Ergenekan CE, Eidsness MK, Ichiye T, Kang CH (2001) Leucine 41 is a gate for water entry in the reduction of Clostridium pasteurianum rubredoxin. Protein Sci 10:613–621PubMedCrossRefGoogle Scholar
  7. Moura I, Teixeira M, LeGall J, Moura JJ (1991) Spectroscopic studies of cobalt and nickel substituted rubredoxin and desulforedoxin. J Inorg Biochem 44:127–139PubMedCrossRefGoogle Scholar
  8. Sanai T, Okuda S, Onoyama K, Oochi N, Oh Y, Kobayashi K, Shimamatsu K, Fujimi S, Fujishima M (1990) Germanium dioxide-induced nephropathy: a new type of renal disease. Nephron 54:53–60PubMedCrossRefGoogle Scholar
  9. Tao SH, Bolger PM (1997) Hazard assessment of germanium supplements. Regul Toxicol Pharmacol 25:211–219PubMedCrossRefGoogle Scholar
  10. Watenpaugh KD, Sieker LC, Jensen LH (1979) The structure of rubredoxin at 1.2 Å resolution. J Mol Biol 131:509–522PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Griselda Hernández
    • 1
  • David M. LeMaster
    • 1
  • Janet S. Anderson
    • 2
  1. 1.New York State Department of HealthWadsworth CenterAlbanyUSA
  2. 2.Department of ChemistryUnion CollegeSchenectadyUSA