Molecular Life Sciences

2018 Edition
| Editors: Robert D. Wells, Judith S. Bond, Judith Klinman, Bettie Sue Siler Masters

Replicative DNA Helicases and Primases

Reference work entry


Replication of a cell’s genetic material is one of the most fundamental functions in biology. The genetic information defining each species is encoded within the sequence of the DNA double helix, and to be copied into a new genome, the sequence of the parental DNA must be revealed and made available to copying enzymes known as DNA polymerases. Watson and Crick, in their seminal 1953 paper on the “Molecular Structure of Nucleic Acids” (Watson and Crick 1953), pointed out that “the specific base pairing (Guanine to Cytosine and Adenine to Thymine) immediately suggests a possible copying mechanism for the genetic material.” They further postulated that “prior to duplication the hydrogen bonds break and the two chains unwind and separate” and asked “what makes the pair of chains unwind and separate?” The answer to this important question is DNA helicases.


DNA helicases are molecular motors that convert chemical energy from NTP (nucleoside triphosphate) binding and...

This is a preview of subscription content, log in to check access.


  1. Abdel-Monem M, Durwald H, Hoffmann-Berling H (1976) Enzymic unwinding of DNA: 2. Chain separation by an ATP-dependent DNA unwinding enzyme. Eur J Biochem 65:441–449PubMedCrossRefGoogle Scholar
  2. Bae B, Chen YH, Costa A, Onesti S, Brunzelle JS, Lin Y, Cann IK, Nair SK (2009) Insights into the architecture of the replicative helicase from the structure of an archaeal MCM homolog. Structure 17:211–222PubMedCrossRefGoogle Scholar
  3. Bailey S, Eliason WK, Steitz TA (2007) Helicase and its complex with a domain of DnaG primase. Science 318:459–463PubMedCrossRefGoogle Scholar
  4. Bird LE, Pan H, Soultanas P, Wigley DB (2000) Mapping protein-protein interactions within a stable complex of DNA primase and DnaB helicase from Bacillus stearothermophilus. Biochemistry 39:171–182PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bochman ML, Schwacha A (2008) The Mcm2-7 complex has in vitro helicase activity. Mol Cell 31:287–293PubMedCrossRefGoogle Scholar
  6. Bochman ML, Schwacha A (2009) The Mcm complex: unwinding the mechanism of a replicative helicase. Micro Mol Biol Rev 73:652–683CrossRefGoogle Scholar
  7. Bowers JL, Randell JC, Chen S, Bell SP (2004) ATP hydrolysis by ORC catalyzes reiterative Mcm2-7 assembly at a defined origin of replication. Mol Cell 16:967–978PubMedCrossRefGoogle Scholar
  8. Brewster AS, Wang G, Yu X, Greenleaf WB, Carazo JM, Tjajadia M, Klein MG, Chen XS (2008) Crystal structure of a near-full-length archaeal MCM: functional insights for an AAA + hexameric helicase. Proc Natl Acad Sci U S A 105:20191–20196PubMedPubMedCentralCrossRefGoogle Scholar
  9. Chong JP, Hayashi MK, Simon MN, Xu RM, Stillman B (2000) A double-hexamer archaeal minichromosome maintenance protein is an ATP- dependent DNA helicase. Proc Natl Acad Sci USA 97:1530–1535PubMedPubMedCentralCrossRefGoogle Scholar
  10. Corn JE, Pease PJ, Hura GL, Berger JM (2005) Crosstalk between primase subunits can act to regulate primer synthesis in trans. Mol Cell 20:391–401PubMedCrossRefGoogle Scholar
  11. Corn JE, Pelton JG, Berger JM (2008) Identification of a DNA primase template tracking site redefines the geometry of primer synthesis. Nat Struct Mol Biol 15:163–169PubMedCrossRefGoogle Scholar
  12. Duggin IG, McCallum SA, Bell SD (2008) Chromosome replication dynamics in the archaeon Sulfolobus acidocaldarius. Proc Natl Acad Sci USA 105:16737–16742PubMedPubMedCentralCrossRefGoogle Scholar
  13. Evrin C, Clarke P, Zech J, Lurz R, Sun J, Uhle S, Li H, Stillman B, Speck C (2009) A double-hexameric MCM2-7 complex is loaded onto origin DNA during licensing of eukaryotic DNA replication. Proc Natl Acad Sci U S A 106:20240–20245PubMedPubMedCentralCrossRefGoogle Scholar
  14. Fletcher RJ, Bishop BE, Leon RP, Sclafani RA, Ogata CM, Chen XS (2003) The structure and function of MCM from archaeal M. Thermoautotrophicum. Nat Struct Biol 10:160–167PubMedCrossRefGoogle Scholar
  15. Gai D, Zhao R, Li D, Finkielstein CV, Chen XS (2004) Mechanisms of conformational change for a replicative hexameric helicase of SV40 large tumour antigen. Cell 119:47–60PubMedCrossRefGoogle Scholar
  16. Gambus A, Khoudoli GA, Jones RC, Blow JJ (2011) MCM2-7 form double hexamers at licensed origins in Xenopus egg extract. J Biol Chem 286:11855–11864PubMedPubMedCentralCrossRefGoogle Scholar
  17. Ilyina TV, Gorbalenya AE, Koonin EV (1992) Organization and evolution of bacterial and bacteriophage primase-helicase systems. J Mol Evol 34:351–357PubMedCrossRefGoogle Scholar
  18. Kelman Z, Lee JK, Hurwitz J (1999) The single minichromosome maintenance protein of Methanobacterium thermoautotrophicum DeltaH contains DNA helicase activity. Proc Natl Acad Sci U S A 96:14783–14788PubMedPubMedCentralCrossRefGoogle Scholar
  19. Larson MA, Griep MA, Bressani R, Chintakayala K, Soultanas P, Hinrichs SH (2010) Class-specific restrictions define primase interactions with DNA template and replicative helicase. Nucleic Acids Res 38:7167–7178PubMedPubMedCentralCrossRefGoogle Scholar
  20. Leipe DD, Aravind L, Grishin NV, Koonin EV (2000) The bacterial replicative helicase DnaB evolved from a RecA duplication. Genome Res 10:5–16PubMedGoogle Scholar
  21. Liu W, Puccie B, Rossi M, Pisani FM, Ladenstein R (2008) Structural analysis of the Sulfolobus solfataricus MCM protein N-terminal domain. Nucleic Acids Res 36:3235–3243PubMedPubMedCentralCrossRefGoogle Scholar
  22. Lo YH, Tsai KL, Sun YJ, Chen WT, Huang CY, Hsiao CD (2009) The crystal structure of a replicative hexameric helicase DnaC and its complex with single-stranded DNA. Nucleic Acids Res 37:804–814PubMedCrossRefGoogle Scholar
  23. Maine GT, Surosky RT, Tye BK (1984) Isolation and characterization of the centromere from chromosome V (CEN5) of Saccharomyces cerevisiae. Mol Cell Biol 4:86–91PubMedPubMedCentralCrossRefGoogle Scholar
  24. McGeoch AT, Trakselis MA, Laskey RA, Bell SD (2005) Organization of the archaeal MCM complex on DNA and implications for the helicase mechanism. Nat Struct Mol Biol 12:756–762PubMedCrossRefGoogle Scholar
  25. Nitharwal RG, Paul S, Dar A, Choudhury NR, Soni RK, Prusty D, Sinha S, Kashav T, Mukhopadhyay G, Chaudhuri TK, Gourinath S, Dhar SK (2007) The domain structure of Helicobacter pylori DnaB helicase; the N-terminal domain can be dispensable for helicase activity whereas the extreme C-terminal region is essential for its function. Nucleic Acids Res 35:2861–2874PubMedPubMedCentralCrossRefGoogle Scholar
  26. Pan H, Wigley DB (2000) Structure of the Zn-binding domain of Bacillus stearothermophilus DNA primase. Structure 8:231–239PubMedCrossRefGoogle Scholar
  27. Qimron U, Lee SJ, Hamdan SM, Richardson CC (2006) Primer initiation and extension by T7 DNA primase. EMBO J 25:2199–2208PubMedPubMedCentralCrossRefGoogle Scholar
  28. Sakakibara N, Kelman LM, Kelman Z (2009) Unwinding the structure and function of the archaeal MCM helicase. Mol Microbiol 72:286–296PubMedCrossRefGoogle Scholar
  29. Samuels M, Gulati G, Shin JH, Opara R, McSweeney E, Sekedat M, Long S, Kelman Z, Jeruzalmi D (2009) A biochemically active MCM-like helicase in Bacillus cereus. Nucl Acids Res 37(13):4441–4452PubMedPubMedCentralCrossRefGoogle Scholar
  30. Strycharska MS, Arias-Palomo E, Lyubimov AY, Erzeberger JP, O’Shea VL, Bustamante CJ, Berger JM (2013) Nucleotide and partner-protein control of bacterial replicative helicase structure and function. Mol Cell 52:844–854PubMedPubMedCentralCrossRefGoogle Scholar
  31. Syson K, Thirlway J, Hounslow AM, Soultanas P, Waltho JP (2005) Solution structure of the helicase-interaction domain of the primase DnaG; a model for helicase activation. Structure 13:609–616PubMedPubMedCentralCrossRefGoogle Scholar
  32. Watson JD, Crick FH (1953) Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171:737–738PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  1. 1.School of Chemistry, Centre for Biomolecular SciencesUniversity of NottinghamNottinghamUK
  2. 2.School of Life SciencesUniversity of NottinghamNottinghamUK