Severe Combined Immune Deficiency

Reference work entry

Severe combined immune deficiency (SCID) is a fatal, heterogeneous group of immune disorder, characterized by T-cell lymphopenia, a profound lack of cellular (T-cell) and humoral (B-cell) immunity, and, in some cases, decreased NK-cell number and function. All infants with SCID develop infections from both common and opportunistic pathogens because protection from maternal antibodies wanes early in life (Buckley et al. 1997; Friedrich et al. 2007). The incidence of SCID is estimated to be 1/100,000 live births, but this may be an underestimate due to some children dying before diagnosis or having unrecognized less severe disease (Stephan et al. 1993; Chan and Puck 2005; McGhee et al. 2005).

Synonyms and Related Disorders

Autosomal recessive SCID (Swiss-type agammaglobulinemia); Bare lymphocyte syndrome; Interleukin (IL)-2 deficient SCID; Janus-associated kinase 3 (JAK3) deficient SCID; Omenn syndrome; Purine nucleoside phosphorylase (PNP) deficient SCID; Reticular dysgenesis; SCID;...


Newborn Screening Purine Nucleoside Phosphorylase Severe Combine Immune Deficiency Molecular Genetic Testing Omenn Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adeli, M. M., & Buckley, R. H. (2010). Why newborn screening for severe combined immunodeficiency is essential: A case report. Pediatrics, 126, e465–e469.PubMedCrossRefGoogle Scholar
  2. Aitken, D. A., Gilmore, D. H., Frew, D. A., et al. (1986). Early prenatal investigation of a pregnancy at risk of adenosine deaminase deficiency using chorionic villi. Journal of Medical Genetics, 23, 52–54.PubMedCrossRefGoogle Scholar
  3. Antoine, C., Muller, S., Cant, A., et al. (2003). Long-term survival and transplantation of haemopoietic stem cells for immunodeficiencies: Report of the European experience 1968–1999. Lancet, 361, 553–560.PubMedCrossRefGoogle Scholar
  4. Arredondo-Vega, F. X., Santisteban, I., Daniels, S., et al. (1998). Adenosine deaminase deficiency: Genotype-phenotype correlations based on expressed activity of 29 mutant alleles. American Journal of Human Genetics, 63, 1049–1059.PubMedCrossRefGoogle Scholar
  5. Belmont, J. W., & Puck, J. M. (2001). T cell and combined immunodeficiency syndromes. In D. R. Scriver, A. L. Beaudet, & W. S. Sly (Eds.), The metabolic and molecular bases of inherited disease (8th ed., pp. 4751–4784). New York: McGraw-Hill.Google Scholar
  6. Blaese, R. M., Culver, K. W., Miller, A. D., et al. (1995). T lymphocyte-directed gene therapy for ADA-SCID: Initial trial results after 4 years. Science, 270, 475–480.PubMedCrossRefGoogle Scholar
  7. Bordignon, C., Notarangelo, L. D., Nobili, N., et al. (1995). Gene therapy in peripheral blood lymphocytes and bone marrow for ADA-immunodeficient patients. Science, 270, 470–475.PubMedCrossRefGoogle Scholar
  8. Buckley, R. H., Schiff, R. I., Schiff, S. E., et al. (1997). Human severe combined immunodeficiency: Genetic, phenotypic, and functional diversity in one hundred eight infants. Journal of Pediatrics, 130, 378–387.PubMedCrossRefGoogle Scholar
  9. Buckley, R. H., Schiff, S. E., Schiff, R. I., et al. (1999). Hematopoietic stem-cell transplantation for the treatment of severe combined immunodeficiency. The New England Journal of Medicine, 340, 508–516.PubMedCrossRefGoogle Scholar
  10. Capece, T., & Nash, D. (2009). GeneReviews. Initial posting October 20, 2009. Available at:
  11. Cavazzana-Calvo, M., Hacein-Bey, S., de Saint Basile, G., et al. (2000). Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science, 288, 669–673.PubMedCrossRefGoogle Scholar
  12. Chan, K., & Puck, J. M. (2005). Development of population-based newborn screening for severe combined immunodeficiency. The Journal of Allergy and Clinical Immunology, 115, 391–398.PubMedCrossRefGoogle Scholar
  13. Davis, J., & Puck, J. M. (2005). X-linked severe combined immunodeficiency. GeneReviews. Updated December 12, 2005. Available at:
  14. Fanos, J. H., Davis, J., & Puck, J. M. (2001). Sib understanding of genetics and attitudes toward carrier testing for X-linked severe combined immunodeficiency. American Journal of Medical Genetics, 98, 46–56.PubMedCrossRefGoogle Scholar
  15. Fisher, A. (1992). Severe combined immunodeficiencies. Immunodeficiency Reviews, 3, 83–100.Google Scholar
  16. Fisher, A., Hacein-Bey, S., Le Deist, F., et al. (2001). Gene therapy for human severe combined immunodeficiencies. Immunity, 15, 1–4.CrossRefGoogle Scholar
  17. Friedrich, W., Hönig, M., & Müller, S. M. (2007). Long-term follow-up in patients with severe combined immunodeficiency treated by bone marrow transplantation. Immunologic Research, 38, 165–173.PubMedCrossRefGoogle Scholar
  18. Gansbacher, B. (2003). Report of a second serious adverse event in a clinical trial of gene therapy for X-linked severe combined immune deficiency (X-SCID). Position of the European Society of Gene Therapy (ESGT). The Journal of Gene Medicine, 5, 261–262.PubMedGoogle Scholar
  19. Gaspar, H. B., Gilmour, K. C., & Jones, A. M. (2001). Severe combined immunodeficiency-molecular pathogenesis and diagnosis. Archives of Disease in Childhood, 84, 169–173.PubMedCrossRefGoogle Scholar
  20. Hacein-Bey-Abina, S., Hauer, J., Lim, A., et al. (2010). Efficacy of gene therapy for X-linked severe combined immunodeficiency. The New England Journal of Medicine, 363, 355–364.PubMedCrossRefGoogle Scholar
  21. Hershfield, M. S. (1993). Enzyme replacement therapy of adenosine deaminase deficiency with polyethylene glycol-modified adenosine deaminase (PEG-ADA). Immunodeficiency, 4, 93–97.PubMedGoogle Scholar
  22. Hershfield, M. S. (1995a). PEG-ADA replacement therapy for adenosine deaminase deficiency: An update after 8.5 years. Clinical Immunology and Immunopathology, 76, S228–S232.PubMedCrossRefGoogle Scholar
  23. Hershfield, M. S. (1995b). PEG-ADA: An alternative to haploidentical bone marrow transplantation and an adjunct to gene therapy for adenosine deaminase deficiency. Human Mutation, 5, 107–112.PubMedCrossRefGoogle Scholar
  24. Hershfield, M. (2009). Adenosine deaminase deficiency. GeneReviews. Updated July 14, 2009. Available at:
  25. Hershfield, M. S., & Mitchell, B. S. (2001). Immunodeficiency diseases caused by adenosine deaminase deficiency and purine nucleoside phosphorylase deficiency. In C. R. Scriver, A. L. Beaudet, W. S. Sly, & D. Valle (Eds.), The metabolic & molecular bases of inherited disease (8th ed., pp. 2586–2588). New York: McGraw-Hill. Chapter 109.Google Scholar
  26. Hoogerbrugge, P. M., van Beusechem, V. W., Fischer, A., et al. (1996). Bone marrow gene transfer in three patients with adenosine deaminase deficiency. Gene Therapy, 3, 179–183.PubMedGoogle Scholar
  27. Kalman, L., Lindegren, M. L., Kobrynski, L., et al. (2004). Mutations in genes required for T-cell development: IL7R, CD45, IL3RG, JAK3, RAG1, RAG2, ARTEMIS, and ADA and severe combined immunodeficiency: HuGE review. Genetics in Medicine, 6, 16–26.PubMedCrossRefGoogle Scholar
  28. Lipstein, E. A., Vorono, S., Browning, M. F., et al. (2010). Systemic evidence review of newborn screening and treatment of severe combined immunodeficiency. Pediatrics, 125, e1226–e1235.PubMedCrossRefGoogle Scholar
  29. McGhee, S. A., Stiehm, E. R., & McCabe, E. R. (2005). Potential costs and benefits of newborn screening for severe combined immunodeficiency. Journal of Pediatrics, 147, 603–608.PubMedCrossRefGoogle Scholar
  30. Myers, L. A., Patel, D. D., Puck, J. M., et al. (2002). Hematopoietic stem cell transplantation for severe combined immunodeficiency in the neonatal period leads to superior thymic output and improved survival. Blood, 99, 872–878.PubMedCrossRefGoogle Scholar
  31. Position statement from the European Society of Gene Therapy (ESGT). (2003). French gene therapy group reports on the adverse event in a clinical trial of gene therapy for X-linked severe combined immune deficiency (X-SCID). Journal of Gene Medicine, 5, 82–84.CrossRefGoogle Scholar
  32. Puck, J. M. (1997). Primary immunodeficiency diseases. Journal of American Medical Association, 278, 1835–1841.CrossRefGoogle Scholar
  33. Puck, J. M., Middelton, L., & Pepper, A. E. (1997). Carrier and prenatal diagnosis of X-linked severe combined immunodeficiency: Mutation detection methods and utilization. Human Genetics, 99, 628–633.PubMedCrossRefGoogle Scholar
  34. Puck, J. M., Nussbaum, R. L., & Conley, M. E. (1987). Carrier detection in X-linked severe combined immunodeficiency based on patterns of X chromosome inactivation. The Journal of Clinical Investigation, 79, 1395–1400.PubMedCrossRefGoogle Scholar
  35. Rosen, F. S. (1997). Severe combined immunodeficiency: A pediatric emergency. Journal of Pediatrics, 130, 345–346.PubMedGoogle Scholar
  36. Schumacher, R. F., Mella, P., Lalatta, F., et al. (1999). Prenatal diagnosis of JAK3 deficient SCID. Prenatal Diagnosis, 19, 653–656.PubMedCrossRefGoogle Scholar
  37. Secord, E. A. (2009) Severe combined immunodeficiency. Medscape Reference. Updated May 6, 2009. Available at:
  38. Stephan, J. L., Vlekova, V., Le Deist, F., et al. (1993). Severe combined immunodeficiency: A retrospective single-center study of clinical presentation and outcome in 117 patients. Journal of Pediatrics, 123, 564–572.PubMedCrossRefGoogle Scholar
  39. Ting, S. S., Leigh, D., Lindeman, R., et al. (1999). Identification of X-linked severe combined immunodeficiency by mutation analysis of blood and hair roots. British Journal of Haematology, 106, 190–194.PubMedCrossRefGoogle Scholar
  40. Wengler, G. S., Lanfranchi, A., Frusca, T., et al. (1996). In-utero transplantation of parental CD34 haematopoietic progenitor cells in a patient with X-linked severe combined immunodeficiency (SCIDX1). Lancet, 348, 1484–1487.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Personalised recommendations