Skip to main content

Fault-Tolerant Control

  • Living reference work entry
  • First Online:
Encyclopedia of Systems and Control

Abstract

A closed-loop control system for an engineering process may have unsatisfactory performance or even instability when faults occur in actuators, sensors, or other process components. Fault-tolerant control (FTC) involves the development and design of special controllers that are capable of tolerating the actuator, sensor, and process faults while still maintaining desirable and robust performance and stability properties. FTC designs involve knowledge of the nature and/or occurrence of faults in the closed-loop system either implicitly or explicitly using methods of fault detection and isolation (FDI), fault detection and diagnosis (FDD), or fault estimation (FE). FTC controllers are reconfigured or restructured using FDI/FDD information so that the effects of the faults are reduced or eliminated within each feedback loop in active or passive approaches or compensated in each control-loop using FE methods. A non-mathematical outline of the essential features of FTC systems is given with important definitions and a classification of FTC systems into either active/passive approaches with examples of some well-known strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Ahmed-Zaid F, Ioannou P, Gousman K, Rooney R (1991) Accommodation of failures in the F-16 aircraft using adaptive control. IEEE Control Syst 11:73–78

    Article  Google Scholar 

  • Blanke M, Kinnaert M, Lunze J, Staroswiecki M (2006) Diagnosis and fault-tolerant control. Springer, Berlin/New York

    MATH  Google Scholar 

  • Boskovic JD, Mehra RK (1999) Stable multiple model adaptive flight control for accommodation of a large class of control effector failures. In: Proceedings of the ACC, San Diego, 2–4 June 1999, pp 1920–1924

    Google Scholar 

  • Boskovic JD, Mehra RK (2002) An adaptive retrofit reconfigurable flight controller. In: Proceedings of the 41st IEEE CDC, Las Vegas. Las Vegas, 10–13 Dec 2002, pp 1257–1262

    Google Scholar 

  • Chen J, Patton RJ (1999) Robust model based fault diagnosis for dynamic systems. Kluwer, Boston

    Book  MATH  Google Scholar 

  • Edwards C, Spurgeon SK, Patton RJ (2000) Sliding mode observers for fault detection and isolation. Automatica 36:541–553

    Article  MATH  MathSciNet  Google Scholar 

  • Edwards C, Lombaerts T, Smaili H (2010) Fault tolerant flight control a benchmark challenge. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  • Efimov D, Cieslak J, Henry D (2012) Supervisory fault-tolerant control with mutual performance optimization. Int J Adapt Control Signal Process 27(4):251–279

    Article  MathSciNet  Google Scholar 

  • Eterno J, Weiss J, Looze D, Willsky A (1985) Design issues for fault tolerant restructurable aircraft control. In: Proceedings of the 24th IEEE CDC, Fort-Lauderdale, Dec 1985

    Google Scholar 

  • Gao Z, Antsaklis P (1992) Reconfigurable control system design via perfect model following. Int J Control 56:783–798

    Article  MATH  MathSciNet  Google Scholar 

  • Gao Z, Ding S (2007) Actuator fault robust estimation and fault-tolerant control for a class of nonlinear descriptor systems. Automatica 43:912–920

    Article  MATH  MathSciNet  Google Scholar 

  • Gertler J (1998) Fault detection and diagnosis in engineering systems. Marcel Dekker, New York

    Google Scholar 

  • Isermann R (2006) Fault-diagnosis systems an introduction from fault detection to fault tolerance. Springer, Berlin/New York

    Google Scholar 

  • Jiang BJ, Staroswiecki M, Cocquempot V (2006) Fault accommodation for nonlinear dynamic systems. IEEE Trans Autom Control 51:1578–1583

    Article  MathSciNet  Google Scholar 

  • Lunze J, Steffen T (2006) Control reconfiguration after actuator failures using disturbance decoupling methods. IEEE Trans Autom Control 51:1590–1601.

    Article  MathSciNet  Google Scholar 

  • Maciejowski JM (1998) The implicit daisy-chaining property of constrained predictive control. J Appl Math Comput Sci 8(4):101–117

    MathSciNet  Google Scholar 

  • Maybeck P, Stevens R (1991) Reconfigurable flight control via multiple model adaptive control methods. IEEE Trans Aerosp Electron Syst 27:470–480

    Article  Google Scholar 

  • Niemann H, Stoustrup J (2005) An architecture for fault tolerant controllers. Int J Control 78(14):1091–1110

    Article  MATH  MathSciNet  Google Scholar 

  • Noura H, Sauter D, Hamelin F, Theilliol D (2000) Fault-tolerant control in dynamic systems: application to a winding machine. IEEE Control Syst Mag 20:33–49

    Article  Google Scholar 

  • Ochi Y, Kanai K (1991) Design of restructurable flight control systems using feedback linearization. J Guid Dyn Control 14(5): 903–911

    Article  Google Scholar 

  • Patton RJ, Frank PM, Clark RN (1989) Fault diagnosis in dynamic Systems: theory and application. Prentice Hall, New York

    Google Scholar 

  • Patton RJ (1993) Robustness issues in fault tolerant control. In: Plenary paper at international conference TOOLDIAG’93, Toulouse, Apr 1993

    Google Scholar 

  • Patton RJ (1997) Fault tolerant control: the 1997 situation. In: IFAC Safeprocess ’97, Hull, pp 1033–1055

    Google Scholar 

  • Patton RJ, Frank PM, Clark RN (2000) Issues of fault diagnosis for dynamic systems. Springer, London/New York

    Book  Google Scholar 

  • Ponsart J, Theilliol D, Aubrun C (2010) Virtual sensors design for active fault tolerant control system applied to a winding machine. Control Eng Pract 18:1037–1044

    Article  Google Scholar 

  • Rauch H (1995) Autonomous control reconfiguration. IEEE Control Syst 15:37–48

    Article  Google Scholar 

  • Richter JH, Schlage T, Lunze J (2007) Control reconfiguration of a thermofluid process by means of a virtual actuator. IET Control Theory Appl 1:1606–1620

    Article  Google Scholar 

  • Sami M, Patton RJ (2013) Active fault tolerant control for nonlinear systems with simultaneous actuator and sensor faults. Int J Control Autom Syst 11(6):1149–1161

    Article  Google Scholar 

  • Å iljak DD (1980) Reliable control using multiple control systems. Int J Control 31:303–329

    Article  MATH  Google Scholar 

  • Staroswiecki M (2005) Fault tolerant control using an admissible model matching approach. In: Joint Decision and Control Conference and European Control Conference, Seville, 12–15 Dec 2005, pp 2421–2426

    Google Scholar 

  • Steinberg M (2005) Historical overview of research in reconfigurable flight control. Proc IMechE, Part G J Aeros Eng 219:263–275

    Article  Google Scholar 

  • Tang X, Tao G, Joshi S (2004) Adaptive output feedback actuator failure compensation for a class of non-linear systems. Int J Adapt Control Signal Process 19(6):419–444

    Article  MathSciNet  Google Scholar 

  • Tornil S, Theilliol D, Ponsart JC (2010) Admissible model matching using DR-regions: fault accommodation and robustness against FDD inaccuracies. J Adapt Control Signal Process 24(11): 927–943

    Google Scholar 

  • Veillette R, Medanic J, Perkins W (1992) Design of reliable control systems. IEEE Trans Autom Control 37:290–304

    Article  MATH  MathSciNet  Google Scholar 

  • Weng J, Patton RJ, Cui P (2007) Active fault-tolerant control of a double inverted pendulum. J Syst Control Eng 221:895

    Google Scholar 

  • Zhang Y, Jiang J (2008) Bibliographical review on reconfigurable fault-tolerant control systems. Annu Rev Control 32:229–252

    Article  Google Scholar 

  • Zhang X, Parisini T, Polycarpou M (2004) Adaptive fault-tolerant control of nonlinear uncertain systems: an information-based diagnostic approach. IEEE Trans Autom Control 49(8):1259–1274

    Article  MathSciNet  Google Scholar 

  • Zhang K, Jiang B, Staroswiecki M (2010) Dynamic output feedback-fault tolerant controller design for Takagi-Sugeno fuzzy systems with actuator faults. IEEE Trans Fuzzy Syst 18:194–201

    Article  Google Scholar 

  • Zhou K, Ren Z (2001) A new controller architecture for high performance, robust, and fault-tolerant control. IEEE Trans Autom Control 46(10):1613–1618

    Article  MATH  MathSciNet  Google Scholar 

  • Zou A, Kumar K (2011) Adaptive fuzzy fault-tolerant attitude control of spacecraft. Control Eng Pract 19:10–21

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ron J. Patton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this entry

Cite this entry

Patton, R.J. (2014). Fault-Tolerant Control. In: Baillieul, J., Samad, T. (eds) Encyclopedia of Systems and Control. Springer, London. https://doi.org/10.1007/978-1-4471-5102-9_226-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5102-9_226-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, London

  • Online ISBN: 978-1-4471-5102-9

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics