Skip to main content

Wheeled Robots

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Book cover Encyclopedia of Systems and Control
  • 81 Accesses

Abstract

The use of mobile robots in applications is steadily increasing, both in the industrial and the service domains. Most mobile robots achieve locomotion using wheels. As a consequence, they are subject to differential constraints that are nonholonomic, i.e., non-integrable. This article reviews the kinematic models of wheeled robots arising from these constraints and discusses their fundamental properties and limitations from a control viewpoint. An overview of the main approaches for trajectory planning and feedback motion control is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Aicardi M, Casalino G, Bicchi A, Balestrino A (1995) Closed loop steering of unicycle-like vehicles via Lyapunov techniques. IEEE Robot Autom Mag 2(1):27–35

    Article  Google Scholar 

  • Bastin G, Campion G, D’Andréa-Novel B (1996) Structural properties and classification of kinematic and dynamic models of wheeled mobile robots. IEEE Trans Robot Autom 12:47–62

    Article  Google Scholar 

  • Brockett RW (1983) Asymptotic stability and feedback stabilization. In Brockett RW, Millman RS, Sussmann HJ (eds) Differential geometric control theory. Birkhauser, Boston

    Google Scholar 

  • Canudas de Wit C, Khennouf H, Samson C, Sørdalen OJ (1993) Nonlinear control design for mobile robots. In: Zheng YF (ed) Recent trends in mobile robots. World Scientific Publisher, Singapore, pp 121–156

    Google Scholar 

  • Choset H, Lynch KM, Hutchinson S, Kantor G, Burgard W, Kavraki LE, Thrun S (2005) Principles of robot motion: theory, algorithms, and implementations. MIT Press, Cambridge

    MATH  Google Scholar 

  • De Luca A, Oriolo G, Samson C (1998) Feedback control of a nonholonomic car-like robot. In: Laumond J-P (ed) Robot motion planning and control. Springer, London, pp 171–253

    Chapter  Google Scholar 

  • Fliess M, Lévine J, Martin P, Rouchon P (1995) Flatness and defect of nonlinear systems: introductory theory and examples. Int J Control 61:1327–1361

    Article  Google Scholar 

  • Lizárraga DA (2004) Obstructions to the existence of universal stabilizers for smooth control systems. Math Control Signals Syst 16:255–277

    Article  MathSciNet  Google Scholar 

  • M’Closkey RT, Murray RM (1997) Exponential stabilization of driftless nonlinear control systems using homogeneous feedback. IEEE Trans Autom Control 42:614–628

    Article  MathSciNet  Google Scholar 

  • Morin P, Samson C (2000) Control of non-linear chained systems: from the Routh-Hurwitz stability criterion to time-varying exponential stabilizers. IEEE Trans Autom Control 45:141–146

    Article  Google Scholar 

  • Morin P, Samson C (2008) Motion control of wheeled mobile robots. In: Khatib O, Siciliano B (eds) Handbook of robotics. Springer, Berlin/Heidelberg, pp 799–826

    Chapter  Google Scholar 

  • Morin P, Samson C (2009) Control of nonholonomic mobile robots based on the transverse function approach. IEEE Trans Robot 25:1058–1073

    Article  Google Scholar 

  • Murray RM, Sastry SS (1993) Nonholonomic motion planning: steering using sinusoids. IEEE Trans Autom Control 38:700–716

    Article  MathSciNet  Google Scholar 

  • Neimark JI, Fufaev FA (1972) Dynamics of nonholonomic systems. American Mathematical Society, Providence

    MATH  Google Scholar 

  • Oriolo G, Vendittelli M (2005) A framework for the stabilization of general nonholonomic systems with an application to the plate-ball mechanism. IEEE Trans Robot 21:162–175

    Article  Google Scholar 

  • Oriolo G, De Luca A, Vendittelli M (2002) WMR control via dynamic feedback linearization: design, implementation and experimental validation. IEEE Trans Control Syst Technol 10:835–852

    Article  Google Scholar 

  • Samson C (1993) Time-varying feedback stabilization of car-like wheeled mobile robots. Int J Robot Res 12(1):55–64

    Article  MathSciNet  Google Scholar 

  • Samson C, Morin P, Lenain R (2016) Modeling and control of wheeled mobile robots. In Siciliano B, Khatib O (eds.) Springer handbook of robotics, pp 1235–1266. Springer, Berlin

    Chapter  Google Scholar 

  • Sastry S (2005) Nonlinear systems: analysis, stability and control. Springer, New York

    Google Scholar 

  • Siciliano B, Sciavicco L, Villani L, Oriolo G (2009) Robotics: modelling, planning and control. Springer, London

    Book  Google Scholar 

  • Siegwart R, Nourbakhsh IR (2004) Introduction to autonomous mobile robots. MIT Press, Cambridge.

    Google Scholar 

  • Tzafestas S (2013) Introduction to mobile robot control. Elsevier, Amsterdam

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Oriolo .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag London Ltd., part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Oriolo, G. (2020). Wheeled Robots. In: Baillieul, J., Samad, T. (eds) Encyclopedia of Systems and Control. Springer, London. https://doi.org/10.1007/978-1-4471-5102-9_178-2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5102-9_178-2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5102-9

  • Online ISBN: 978-1-4471-5102-9

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Wheeled Robots
    Published:
    10 April 2020

    DOI: https://doi.org/10.1007/978-1-4471-5102-9_178-2

  2. Original

    Wheeled Robots
    Published:
    17 February 2014

    DOI: https://doi.org/10.1007/978-1-4471-5102-9_178-1