Skip to main content

Wheeled Robots

Encyclopedia of Systems and Control

Abstract

The use of mobile robots in service applications is steadily increasing. Most of these systems achieve locomotion using wheels. As a consequence, they are subject to differential constraints that are nonholonomic, i.e., non-integrable. This article reviews the kinematic models of wheeled robots arising from these constraints and discusses their fundamental properties and limitations from a control viewpoint. An overview of the main approaches for trajectory planning and feedback motion control is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Aicardi M, Casalino G, Bicchi A, Balestrino A (1995) Closed loop steering of unicycle-like vehicles via lyapunov techniques. IEEE Robot Autom Mag 2(1):27–35

    Article  Google Scholar 

  • Bastin G, Campion G, D’Andréa-Novel B (1996) Structural properties and classification of kinematic and dynamic models of wheeled mobile robots. IEEE Trans Robot Autom 12:47–62

    Article  Google Scholar 

  • Brockett RW (1983) Asymptotic stability and feedback stabilization. In: Brockett RW, Millman RS, Sussmann HJ (eds) Differential geometric control theory. Birkhauser, Boston

    Google Scholar 

  • Canudas de Wit C, Khennouf H, Samson C, Sørdalen OJ (1993) Nonlinear control design for mobile robots. In: Zheng YF (ed) Recent trends in mobile robots. World Scientific, Singapore, pp 121–156

    Google Scholar 

  • Choset H, Lynch KM, Hutchinson S, Kantor G, Burgard W, Kavraki LE, Thrun S (2005) Principles of robot motion: theory, algorithms, and implementations. MIT, Cambridge

    Google Scholar 

  • De Luca A, Oriolo G, Samson C (1998) Feedback control of a nonholonomic car-like robot. In: Laumond J-P (ed) Robot motion planning and control. Springer, London, pp 171–253

    Chapter  Google Scholar 

  • Fliess M, Lévine J, Martin P, Rouchon P (1995) Flatness and defect of nonlinear systems: introductory theory and examples. Int J Control 61:1327–1361

    Article  MATH  Google Scholar 

  • Lizárraga DA (2004) Obstructions to the existence of universal stabilizers for smooth control systems. Math Control Signals Syst 16:255–277

    Article  MATH  Google Scholar 

  • M’Closkey RT, Murray RM (1997) Exponential stabilization of driftless nonlinear control systems using homogeneous feedback. IEEE Trans Autom Control 42:614–628

    Article  MATH  MathSciNet  Google Scholar 

  • Morin P, Samson C (2000) Control of non-linear chained systems: from the Routh-Hurwitz stability criterion to time-varying exponential stabilizers. IEEE Trans Autom Control 45:141–146

    Article  MATH  MathSciNet  Google Scholar 

  • Morin P, Samson C (2008) Motion control of wheeled mobile robots. In: Khatib O, Siciliano B (eds) Handbook of robotics. Springer, New York, pp 799–826

    Chapter  Google Scholar 

  • Morin P, Samson C (2009) Control of nonholonomic mobile robots based on the transverse function approach. IEEE Trans Robot 25:1058–1073

    Article  Google Scholar 

  • Murray RM, Sastry SS (1993) Nonholonomic motion planning: steering using sinusoids. IEEE Trans Autom Control 38:700–716

    Article  MATH  MathSciNet  Google Scholar 

  • Neimark JI, Fufaev FA (1972) Dynamics of nonholonomic systems. American Mathematical Society, Providence

    MATH  Google Scholar 

  • Oriolo G, Vendittelli M (2005) A framework for the stabilization of general nonholonomic systems with an application to the plate-ball mechanism. IEEE Trans Robot 21:162–175

    Article  Google Scholar 

  • Oriolo G, De Luca A, Vendittelli M (2002) WMR control via dynamic feedback linearization: design, implementation and experimental validation. IEEE Trans Control Syst Technol 10:835–852

    Article  Google Scholar 

  • Samson C (1993) Time-varying feedback stabilization of car-like wheeled mobile robots. Int J Robot Res 12(1):55–64

    Article  MathSciNet  Google Scholar 

  • Sastry S (2005) Nonlinear systems: analysis, stability and control. Springer, New York

    Google Scholar 

  • Siciliano B, Sciavicco L, Villani L, Oriolo G (2009) Robotics: modelling, planning and control. Springer, London

    Book  Google Scholar 

  • Siegwart R, Nourbakhsh IR (2004) Introduction to autonomous mobile robots. MIT, Cambridge

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Oriolo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this entry

Cite this entry

Oriolo, G. (2014). Wheeled Robots. In: Baillieul, J., Samad, T. (eds) Encyclopedia of Systems and Control. Springer, London. https://doi.org/10.1007/978-1-4471-5102-9_178-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5102-9_178-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, London

  • Online ISBN: 978-1-4471-5102-9

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Wheeled Robots
    Published:
    10 April 2020

    DOI: https://doi.org/10.1007/978-1-4471-5102-9_178-2

  2. Original

    Wheeled Robots
    Published:
    17 February 2014

    DOI: https://doi.org/10.1007/978-1-4471-5102-9_178-1