Skip to main content

Redundant Robots

  • Living reference work entry
  • Latest version View entry history
  • First Online:

Abstract

Redundancy may occur in different ways in a robotic system. This article focuses on the resolution of kinematic redundancy, i.e., on the techniques for exploiting the redundant degrees of freedom in the solution of the inverse kinematics problem; this is indeed an issue of major relevance for motion planning and control purposes.

This is a preview of subscription content, log in via an institution.

Bibliography

  • Antonelli G, Arrichiello F, Chiaverini S (2010) Flocking for multi-robot systems via the null-space-based behavioral control. Swarm Intell 4(1):37–56

    Article  Google Scholar 

  • Baillieul J (1985) Kinematic programming alternatives for redundant manipulators. In: Proceedings of 1985 IEEE international conference on robotics and automation, St. Louis, pp 722–728

    Chapter  Google Scholar 

  • Baillieul J, Hollerbach J, Brockett R (1984) Programming and control of kinematically redundant manipulators. In: Proceedings of 23th IEEE conference on decision and control, Las Vegas, pp 768–774

    Google Scholar 

  • Ben-Gharbia K, Maciejewski A, Roberts R (2013) Kinematic design of redundant robotic manipulators for spatial positioning that are optimally fault-tolerant. IEEE Trans Robot 29:1300–1307

    Article  Google Scholar 

  • Chiaverini S (1997) Singularity-robust task-priority redundancy resolution for real-time kinematic control of robot manipulators. IEEE Trans Robot Autom 13:398–410

    Article  Google Scholar 

  • Chiaverini S, Oriolo G, Walker I (2008) Kinematically redundant manipulators. In: B Siciliano, O Khatib (eds) Springer handbook of robotics. Springer, Berlin, pp 245–268

    Chapter  Google Scholar 

  • Chiaverini S, Oriolo G, Maciejewski A (2016) Redundant robots. In: B Siciliano, O Khatib (eds) Springer handbook of robotics, 2nd edn. Springer, Berlin, pp 221–242

    Chapter  Google Scholar 

  • Ficuciello F, Villani L, Siciliano B (2015) Variable impedance control of redundant manipulators for intuitive human–robot physical interaction. IEEE Trans Robot 31:850–863

    Article  Google Scholar 

  • Hollerbach J, Suh K (1987) Redundancy resolution of manipulators through torque optimization. IEEE J Robot Autom 3:308–316

    Article  Google Scholar 

  • Kanoun O, Laumond JP (2010) Optimizing the stepping of a humanoid robot for a sequence of tasks. In: Proceedings of 10th IEEE-RAS international conference on humanoid robots, Nashville, pp 204–209

    Google Scholar 

  • Kazerounian K, Wang Z (1988) Global versus local optimization in redundancy resolution of robotic manipulators. Int J Robot Res 7(5):3–12

    Article  Google Scholar 

  • Khatib O (1990) Motion/force redundancy of manipulators. In: Proceedings of Japan-USA symposium on flexible automation, Kyoto, pp 337–342

    Google Scholar 

  • Liégeois A (1977) Automatic supervisory control of the configuration and behavior of multibody mechanisms. IEEE Trans Syst Man Cybern 7:868–871

    Article  Google Scholar 

  • Liu Y, Li Y (2006) A new method of executing multiple auxiliary tasks by redundant nonholonomic mobile manipulators. In: Proceedings of 2006 IEEE/RSJ international conference on intelligent robots and systems, Beijing, pp 1–6

    Google Scholar 

  • Luo R, Chang CC (2012) Multisensor fusion and integration: a review on approaches and its applications in mechatronics. IEEE Trans Ind Inf 8:49–60

    Article  Google Scholar 

  • Maciejewski A, Klein C (1985) Obstacle avoidance for kinematically redundant manipulators in dynamically varying environments. Int J Robot Res 4(3):109–117

    Article  Google Scholar 

  • Nakamura Y, Hanafusa H, Yoshikawa T (1987) Task-priority based redundancy control of robot manipulators. Int J Robot Res 6(2):3–15

    Article  Google Scholar 

  • Prats M, Sanz P, del Pobil A (2011) The advantages of exploiting grasp redundancy in robotic manipulation. In: Proceedings of 5th international conference on automation, robotics and applications, Wellington, pp 334–339

    Google Scholar 

  • Roberts R, Hyun G, Maciejewski A (2008) Fundamental limitations on designing optimally fault-tolerant redundant manipulators. IEEE Trans Robot 24:1224–1237

    Article  Google Scholar 

  • Rolf M, Steil J, Gienger M (2010) Goal babbling permits direct learning of inverse kinematics. IEEE Trans Auton Ment Dev 2:216–229

    Article  Google Scholar 

  • Salvietti G, Zhang H, Gonzalez-Gomez J, Prattichizzo D, Zhang J (2009) Task priority grasping and locomotion control of modular robot. In: Proceedings of 2009 IEEE international conference on robotics and biomimetics, Guilin, pp 1069–1074

    Google Scholar 

  • Sciavicco L, Siciliano B (1988) A solution algorithm to the inverse kinematic problem for redundant manipulators. IEEE J Robot Autom 4:403–410

    Article  Google Scholar 

  • Whitney D (1969) Resolved motion rate control of manipulators and human prostheses. IEEE Trans Man Mach Syst 10(2):47–53

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Chiaverini .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag London Ltd., part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Chiaverini, S. (2020). Redundant Robots. In: Baillieul, J., Samad, T. (eds) Encyclopedia of Systems and Control. Springer, London. https://doi.org/10.1007/978-1-4471-5102-9_173-2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5102-9_173-2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5102-9

  • Online ISBN: 978-1-4471-5102-9

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Redundant Robots
    Published:
    30 November 2019

    DOI: https://doi.org/10.1007/978-1-4471-5102-9_173-2

  2. Original

    Redundant Robots
    Published:
    13 March 2014

    DOI: https://doi.org/10.1007/978-1-4471-5102-9_173-1