Skip to main content

Motion Description Languages and Symbolic Control

  • Living reference work entry
  • Latest version View entry history
  • First Online:
  • 30 Accesses

Abstract

The fundamental idea behind symbolic control is to mitigate the complexity of a dynamic system by limiting the set of available controls to a typically finite collection of symbols. Each symbol represents a control law that may be either open- or closed-loop. With these symbols, a simpler description of the motion of the system can be created, thereby easing the challenges of analysis and control design. In this entry, we provide a high-level description of symbolic control; discuss briefly its history, connections, and applications; and provide a few insights into where the field is going.

This is a preview of subscription content, log in via an institution.

Bibliography

  • Abate A, D’Innocenzo A, Di Benedetto MD (2011) Approximate abstractions of stochastic hybrid systems. IEEE Trans Autom Control 56(11):2688–2694

    Article  MathSciNet  Google Scholar 

  • Arkin RC (1998) Behavior-based robotics. MIT Press

    Google Scholar 

  • Baillieul J, Ozcimder K (2014) Dancing robots: the control theory of communication through movement. In: Laviers A, Egerstedt M (eds) Controls and Art. Springer, Switzerland, pp 51–72

    Chapter  Google Scholar 

  • Bartocci E, Aydin Gol E, Haghighi I, Belta C (2018) A formal methods approach to pattern recognition and synthesis in reaction diffusion networks. IEEE Trans Control Netw Syst 5(1):308–320

    Article  MathSciNet  Google Scholar 

  • Belta C, Bicchi A, Egerstedt M, Frazzoli E, Klavins E, Pappas GJ (2007) Symbolic planning and control of robot motion (grand challenges of robotics). IEEE Robot Autom Mag 14(1):61–70

    Article  Google Scholar 

  • Bicchi A, Marigo A, Piccoli B (2002) On the reachability of quantized control systems. IEEE Trans Autom Control 47(4):546–563

    Article  MathSciNet  Google Scholar 

  • Bicchi A, Marigo A, Piccoli B (2006) Feedback encoding for efficient symbolic control of dynamical systems. IEEE Trans Autom Control 51(6):987–1002

    Article  MathSciNet  Google Scholar 

  • Brockett RW (1988) On the computer control of movement. In: IEEE International Conference on Robotics and Automation, pp 534–540

    Google Scholar 

  • Brockett RW (1993) Hybrid models for motion control systems. In: Trentelman HL, Willems JC (eds) Essays on control. Birkhauser, Basel, pp 29–53

    Chapter  Google Scholar 

  • Brooks R (1986) A robust layered control system for a mobile robot. IEEE J Robot Autom RA-2(1):14–23

    Article  Google Scholar 

  • Egerstedt M (2002) Motion description languages for multi-modal control in robotics. In: Bicchi A, Cristensen H, Prattichizzo D (eds) Control problems in robotics. Springer, Berlin Heidelberg, pp 75–90

    MATH  Google Scholar 

  • Egerstedt M, Brockett RW (2003) Feedback can reduce the specification complexity of motor programs. IEEE Trans Autom Control 48(2):213–223

    Article  MathSciNet  Google Scholar 

  • Fainekos GE, Girard A, Kress-Gazit H, Pappas GJ (2009) Temporal logic motion planning for dynamic robots. Automatica 45(2):343–352

    Article  MathSciNet  Google Scholar 

  • Frazzoli E, Dahleh MA, Feron E (2005) Maneuver-based motion planning for nonlinear systems with symmetries. IEEE Trans Robot 21(6):1077–1091

    Article  Google Scholar 

  • Girard A, Pappas GJ (2007) Approximation metrics for discrete and continuous systems. IEEE Trans Autom Control 52(5):782–798

    Article  MathSciNet  Google Scholar 

  • Johnson S (2002) Emergence: the connected lives of ants, brains, cities, and software. Scribner, Newyork

    Google Scholar 

  • Klavins E (2007) Programmable self-assembly. Control Syst IEEE 27(4):43–56

    Article  Google Scholar 

  • Kress-Gazit H (2011) Robot challenges: toward development of verification and synthesis techniques [from the Guest Editors]. IEEE Robot Autom Mag 18(3):22–23

    Article  Google Scholar 

  • Kuipers B (2000) The spatial semantic hierarchy. Artif Intell 119(1–2):191–233

    Article  MathSciNet  Google Scholar 

  • Lahijanian M, Andersson SB, Belta C (2012) Temporal logic motion planning and control with probabilistic satisfaction guarantees. IEEE Trans Robot 28(2): 396–409

    Article  Google Scholar 

  • Manikonda V, Krishnaprasad PS, Hendler J (1998) Languages, behaviors, hybrid architectures, and motion control. In: Baillieul J, Willems JC (eds) Mathematical control theory. Springer, New York, pp 199–226

    MATH  Google Scholar 

  • Murray RM, Deno DC, Pister KSJ, Sastry SS (1992) Control primitives for robot systems. IEEE Trans Syst Man Cybern 22(1):183–193

    Article  Google Scholar 

  • Tabuada P (2006) Symbolic control of linear systems based on symbolic subsystems. IEEE Trans Autom Control 51(6):1003–1013

    Article  MathSciNet  Google Scholar 

  • Tarraf DC, Megretski A, Dahleh MA (2008) A framework for robust stability of systems over finite alphabets. IEEE Trans Autom Control 53(5):1133–1146

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag London Ltd., part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Andersson, S.B. (2020). Motion Description Languages and Symbolic Control. In: Baillieul, J., Samad, T. (eds) Encyclopedia of Systems and Control. Springer, London. https://doi.org/10.1007/978-1-4471-5102-9_155-2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5102-9_155-2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5102-9

  • Online ISBN: 978-1-4471-5102-9

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Motion Description Languages and Symbolic Control
    Published:
    29 December 2019

    DOI: https://doi.org/10.1007/978-1-4471-5102-9_155-2

  2. Original

    Motion Description Languages and Symbolic Control
    Published:
    12 March 2014

    DOI: https://doi.org/10.1007/978-1-4471-5102-9_155-1