Encyclopedia of Systems and Control

Living Edition
| Editors: John Baillieul, Tariq Samad

Motion Description Languages and Symbolic Control

  • Sean B. Andersson
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4471-5102-9_155-1


The fundamental idea behind symbolic control is to mitigate the complexity of a dynamic system by limiting the set of available controls to a typically finite collection of symbols. Each symbol represents a control law that may be either open or closed loop. With these symbols, a simpler description of the motion of the system can be created, thereby easing the challenges of analysis and control design. In this entry, we provide a high-level description of symbolic control; discuss briefly its history, connections, and applications; and provide a few insights into where the field is going.


Abstraction Complex systems Formal methods 
This is a preview of subscription content, log in to check access.


  1. Abate A, D’Innocenzo A, Di Benedetto MD (2011) Approximate abstractions of stochastic hybrid systems. IEEE Trans Autom Control 56(11):2688–2694CrossRefGoogle Scholar
  2. Arkin RC (1998) Behavior-based robotics. MIT, CambridgeGoogle Scholar
  3. Baillieul J, Ozcimder K (2012) The control theory of motion-based communication: problems in teaching robots to dance. In: American control conference, Montreal, pp 4319–4326Google Scholar
  4. Belta C, Bicchi A, Egerstedt M, Frazzoli E, Klavins E, Pappas GJ (2007) Symbolic planning and control of robot motion [Grand Challenges of Robotics]. IEEE Robot Autom Mag 14(1):61–70CrossRefGoogle Scholar
  5. Bicchi A, Marigo A, Piccoli B (2002) On the reachability of quantized control systems. IEEE Trans Autom Control 47(4):546–563CrossRefMathSciNetGoogle Scholar
  6. Bicchi A, Marigo A, Piccoli B (2006) Feedback encoding for efficient symbolic control of dynamical systems. IEEE Trans Autom Control 51(6):987–1002CrossRefMathSciNetGoogle Scholar
  7. Brockett RW (1988) On the computer control of movement. In: IEEE International conference on robotics and automation, Philadelphia, pp 534–540Google Scholar
  8. Brockett RW (1993) Hybrid models for motion control systems. In: Trentelman HL, Willems JC (eds) Essays on control. Birkhauser, Boston, pp 29–53CrossRefGoogle Scholar
  9. Brooks R (1986) A robust layered control system for a mobile robot. IEEE J Robot Autom RA-2(1):14–23CrossRefGoogle Scholar
  10. Egerstedt M (2002) Motion description languages for multi-modal control in robotics. In: Bicchi A, Cristensen H, Prattichizzo D (eds) Control problems in robotics. Springer, pp 75–89Google Scholar
  11. Egerstedt M, Brockett RW (2003) Feedback can reduce the specification complexity of motor programs. IEEE Trans Autom Control 48(2):213–223CrossRefMathSciNetGoogle Scholar
  12. Fainekos GE, Girard A, Kress-Gazit H, Pappas GJ (2009) Temporal logic motion planning for dynamic robots. Automatica 45(2):343–352CrossRefMATHMathSciNetGoogle Scholar
  13. Frazzoli E, Dahleh MA, Feron E (2005) Maneuver-based motion planning for nonlinear systems with symmetries. IEEE Trans Robot 21(6):1077–1091CrossRefGoogle Scholar
  14. Girard A, Pappas GJ (2007) Approximation metrics for discrete and continuous systems. IEEE Trans Autom Control 52(5):782–798CrossRefMathSciNetGoogle Scholar
  15. Johnson S (2002) Emergence: the connected lives of ants, brains, cities, and software. Scribner, New YorkGoogle Scholar
  16. Klavins E (2007) Programmable self-assembly. IEEE Control Syst 27(4):43–56CrossRefGoogle Scholar
  17. Kress-Gazit H (2011) Robot challenges: toward development of verification and synthesis techniques [from the Guest Editors]. IEEE Robot Autom Mag 18(3):22–23CrossRefGoogle Scholar
  18. Kuipers B (2000) The spatial semantic hierarchy. Artif Intell 119(1–2):191–233CrossRefMATHMathSciNetGoogle Scholar
  19. Lahijanian M, Andersson SB, Belta C (2012) Temporal logic motion planning and control with probabilistic satisfaction guarantees. IEEE Trans Robot 28(2):396–409CrossRefGoogle Scholar
  20. Manikonda V, Krishnaprasad PS, Hendler J (1998) Languages, behaviors, hybrid architectures, and motion control. In: Baillieul J, Willems JC (eds) Mathematical control theory. Springer, New York, pp 199–226Google Scholar
  21. Murray RM, Deno DC, Pister KSJ, Sastry SS (1992) Control primitives for robot systems. IEEE Trans Syst Man Cybern 22(1):183–193CrossRefMATHGoogle Scholar
  22. Tabuada P (2006) Symbolic control of linear systems based on symbolic subsystems. IEEE Trans Autom Control 51(6):1003–1013CrossRefMathSciNetGoogle Scholar
  23. Tarraf DC, Megretski A, Dahleh MA (2008) A framework for robust stability of systems over finite alphabets. IEEE Trans Autom Control 53(5):1133–1146CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Sean B. Andersson
    • 1
  1. 1.Mechanical Engineering and Division of Systems EngineeringBoston UniversityBostonUSA