Encyclopedia of Systems and Control

Living Edition
| Editors: John Baillieul, Tariq Samad

Model Building for Control System Synthesis

Living reference work entry
DOI: https://doi.org/10.1007/978-1-4471-5102-9_141-1


The process of developing control-oriented mathematical models of physical systems is a complex task, which in general implies a careful combination of prior knowledge about the physics of the system under study with information coming from experimental data. In this article the role of mathematical models in control system design and the problem of developing compact control-oriented models are discussed.


Control-oriented modeling Simulation Continuous-time systems Discrete-time systems Time-invariant systems Time-varying systems Parameter-varying systems Analytical models Computational modeling System identification Uncertainty 
This is a preview of subscription content, log in to check access.


  1. Antoulas A (2009) Approximation of large-scale dynamical systems. SIAM, PhiladelphiaMATHGoogle Scholar
  2. Hecker S, Varga A (2006) Symbolic manipulation techniques for low order LFT-based parametric uncertainty modelling. Int J Control 79(11):1485–1494CrossRefMATHMathSciNetGoogle Scholar
  3. Hecker S, Varga A, Magni J-F (2005) Enhanced LFR-toolbox for MATLAB. Aerosp Sci Technol 9(2):173–180CrossRefMATHGoogle Scholar
  4. Klein V, Morelli EA (2006) Aircraft system identification: theory and practice. AIAA, RestonCrossRefGoogle Scholar
  5. Ljung L (1999) System identification: theory for the user. Prentice-Hall, New JerseyGoogle Scholar
  6. Ljung L (2008) Perspectives on system identification. In: 2008 IFAC world congress, SeoulGoogle Scholar
  7. Lopes dos Santos P, Azevedo Perdicoulis TP, Novara C, Ramos JA, Rivera DE (eds) (2011) Linear parameter-varying system identification: new developments and trends. World Scientific, SingaporeGoogle Scholar
  8. Lovera M (ed) (2014) Control-oriented modelling and identification: theory and practice. IET, LondonGoogle Scholar
  9. Mohammadpour J, Scherer C (eds) (2012) Control of linear parameter varying systems with applications. Springer, New YorkGoogle Scholar
  10. Skogestad S, Postlethwaite I (2007) Multivariable feedback control analysis and design. Wiley, Chichester/New YorkGoogle Scholar
  11. Tiller M (2001) Introduction to physical modelling with Modelica. Kluwer, BostonCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  1. 1.Politecnico di MilanoMilanItaly