Encyclopedia of Systems and Control

Living Edition
| Editors: John Baillieul, Tariq Samad

Robustness Issues in Quantum Control

Living reference work entry
DOI: https://doi.org/10.1007/978-1-4471-5102-9_132-1

Abstract

Robust quantum control theory is concerned with the design of controllers for quantum systems taking into account uncertainty is the model of the system. The robust open-loop control of quantum systems is discussed in this entry. Also discussed is the robust stability analysis problem for quantum systems, and two forms of quantum small gain theorem are presented. In addition, the entry discusses the design of robust quantum feedback control systems.

Keywords

Quantum control Robustness Robust stability Minimax control Ensemble controllability H control 
This is a preview of subscription content, log in to check access

Bibliography

  1. Beauchard K, da Silva PSP, Rouchon P (2012) Stabilization for an ensemble of half-spin systems. Automatica 48(1):68–76CrossRefMATHMathSciNetGoogle Scholar
  2. D’Helon C, James M (2006) Stability, gain, and robustness in quantum feedback networks. Phys Rev A 73:053803CrossRefGoogle Scholar
  3. Dong D, Petersen IR (2009) Sliding mode control of quantum systems. New J Phys 11:105033CrossRefMathSciNetGoogle Scholar
  4. Dong D, Petersen IR (2012) Sliding mode control of two-level quantum systems. Automatica 48(5):725–735CrossRefMATHMathSciNetGoogle Scholar
  5. Dong D, Lam J, Petersen IR (2009) Robust incoherent control of qubit systems via switching and optimization. Int J Control 83(1):206–217CrossRefMathSciNetGoogle Scholar
  6. Gough J, James MR (2009) The series product and its application to quantum feedforward and feedback networks. IEEE Trans Autom Control 54(11):2530–2544CrossRefMathSciNetGoogle Scholar
  7. James M, Gough J (2010) Quantum dissipative systems and feedback control design by interconnection. IEEE Trans Autom Control 55(8):1806–1821CrossRefMathSciNetGoogle Scholar
  8. James MR, Nurdin HI, Petersen IR (2008) H control of linear quantum stochastic systems. IEEE Trans Autom Control 53(8):1787–1803CrossRefMathSciNetGoogle Scholar
  9. Li J-S, Khaneja N (2006) Control of inhomogeneous quantum ensembles. Phys Rev A 73:030302CrossRefGoogle Scholar
  10. Li J-S, Khaneja N (2009) Ensemble control of Bloch equations. IEEE Trans Autom Control 54(3):528–536CrossRefMathSciNetGoogle Scholar
  11. Mabuchi H, Khaneja N (2005) Principles and applications of control in quantum systems. Int J Robust Nonlin Control 15:647–667CrossRefMATHMathSciNetGoogle Scholar
  12. Nielsen M, Chuang I (2000) Quantum computation and quantum information. Cambridge University Press, CambridgeMATHGoogle Scholar
  13. Owrutsky P, Khaneja N (2012) Control of inhomogeneous ensembles on the Bloch sphere. Phys Rev A 86:022315CrossRefGoogle Scholar
  14. Petersen IR (2014) Quantum control. In: Samad T, Baillieul J (eds) Encyclopedia of systems and control. Springer, Heidelberg/GermanyGoogle Scholar
  15. Petersen IR, Ugrinovskii V, James MR (2012) Robust stability of uncertain linear quantum systems. Philos Trans R Soc A 370(1979):5354–5363CrossRefGoogle Scholar
  16. Rabitz H (2002) Optimal control of quantum systems: origins of inherent robustness to control field fluctuations. Phys Rev A 66:063405CrossRefGoogle Scholar
  17. Ruths J, Li J-S (2012) Optimal control of inhomogeneous ensembles. IEEE Trans Autom Control 57(8):2021–2032CrossRefMathSciNetGoogle Scholar
  18. Yamamoto N, Bouten L (2009) Quantum risk-sensitive estimation and robustness. IEEE Trans Autom Control 54(1):92–107CrossRefMathSciNetGoogle Scholar
  19. Zhang H, Rabitz H (1994) Robust optimal control of quantum molecular systems in the presence of disturbances and uncertainties. Phys Rev A 49:2241–2254CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.School of Engineering and Information TechnologyUniversity of New South Wales, the Australian Defence Force AcademyCanberraAustralia