Encyclopedia of Systems and Control

Living Edition
| Editors: John Baillieul, Tariq Samad

Control of Networks of Underwater Vehicles

  • Naomi Ehrich Leonard
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4471-5102-9_126-1

Abstract

Control of networks of underwater vehicles is critical to underwater exploration, mapping, search, and surveillance in the multiscale, spatiotemporal dynamics of oceans, lakes, and rivers. Control methodologies have been derived for tasks including feature tracking and adaptive sampling and have been successfully demonstrated in the field despite the severe challenges of underwater operations.

Keywords

Mobile sensor arrays Underwater exploration Feature tracking Adaptive sampling Gliders 
This is a preview of subscription content, log in to check access.

Bibliography

  1. Bachmayer R, Leonard NE (2002) Vehicle networks for gradient descent in a sampled environment. In: Proceedings of the 41st IEEE Conference on Decision and Control, Las Vegas, pp 112–117Google Scholar
  2. Bellingham JG, Rajan K (2007) Robotics in remote and hostile environments. Science 318(5853):1098–1102CrossRefGoogle Scholar
  3. Bennett A (2002) Inverse modeling of the ocean and atmosphere. Cambridge University Press, CambridgeCrossRefMATHGoogle Scholar
  4. Curtin TB, Bellingham JG, Catipovic J, Webb D (1993) Autonomous oceanographic sampling networks. Oceanography 6(3):86–94CrossRefGoogle Scholar
  5. Dunbabin M, Marques L (2012) Robots for environmental monitoring: significant advancements and applications. IEEE Robot Autom Mag 19(1):24–39CrossRefGoogle Scholar
  6. Fiorelli E, Leonard NE, Bhatta P, Paley D, Bachmayer R, Fratantoni DM (2006) Multi-AUV control and adaptive sampling in Monterey Bay. IEEE J Ocean Eng 31(4):935–948CrossRefGoogle Scholar
  7. Grocholsky B (2002) Information-theoretic control of multiple sensor platforms. PhD thesis, University of SydneyGoogle Scholar
  8. Leonard NE, Paley DA, Lekien F, Sepulchre R, Fratantoni DM, Davis RE (2007) Collective motion, sensor networks, and ocean sampling. Proc IEEE 95(1):48–74CrossRefGoogle Scholar
  9. Leonard NE, Paley DA, Davis RE, Fratantoni DM, Lekien F, Zhang F (2010) Coordinated control of an underwater glider fleet in an adaptive ocean sampling field experiment in Monterey Bay. J Field Robot 27(6):718–740CrossRefGoogle Scholar
  10. Ögren P, Fiorelli E, Leonard NE (2004) Cooperative control of mobile sensor networks: adaptive gradient climbing in a distributed environment. IEEE Trans Autom Control 49(8):1292–1302CrossRefGoogle Scholar
  11. Paley D, Zhang F, Leonard NE (2008) Cooperative control for ocean sampling: the glider coordinated control system. IEEE Trans Control Syst Technol 16(4):735–744CrossRefGoogle Scholar
  12. Redfield S (2013) Cooperation between underwater vehicles. In: Seto ML (ed) Marine robot autonomy. Springer, New York, pp 257–286CrossRefGoogle Scholar
  13. Rudnick D, Davis R, Eriksen C, Fratantoni D, Perry M (2004) Underwater gliders for ocean research. Mar Technol Soc J 38(1):48–59Google Scholar
  14. Sepulchre R, Paley DA, Leonard NE (2008) Stabilization of planar collective motion with limited communication. IEEE Trans Autom Control 53(3):706–719CrossRefMathSciNetGoogle Scholar
  15. Zhang F, Leonard NE (2010) Cooperative filters and control for cooperative exploration. IEEE Trans Autom Control 55(3):650–663CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  1. 1.Department of Mechanical and Aerospace EngineeringPrinceton UniversityPrincetonUSA