Encyclopedia of Systems and Control

Living Edition
| Editors: John Baillieul, Tariq Samad

Nonlinear System Identification Using Particle Filters

Living reference work entry
DOI: https://doi.org/10.1007/978-1-4471-5102-9_106-1


Particle filters are computational methods opening up for systematic inference in nonlinear/non-Gaussian state-space models. The particle filters constitute the most popular sequential Monte Carlo (SMC) methods. This is a relatively recent development, and the aim here is to provide a brief exposition of these SMC methods and how they are key enabling algorithms in solving nonlinear system identification problems. The particle filters are important for both frequentist (maximum likelihood) and Bayesian nonlinear system identification.


Particle filter Particle smoother Sequential Monte Carlo Maximum likelihood Bayesian MCMC Particle MCMC and Backward simulation 
This is a preview of subscription content, log in to check access.


  1. Andrieu C, Doucet A, Holenstein R (2010) Particle Markov chain Monte Carlo methods. J R Stat Soc Ser B 72(2):1–33MathSciNetGoogle Scholar
  2. Cappé O (2011) Online EM algorithm for hidden Markov models. J Comput Graph Stat 20(3): 728–749CrossRefGoogle Scholar
  3. Cappé O, Moulines E, Rydén T (2005) Inference in hidden Markov models. Springer, New YorkMATHGoogle Scholar
  4. Dempster A, Laird N, Rubin D (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B 39(1):1–38MATHMathSciNetGoogle Scholar
  5. Doucet A, Johansen AM (2011) A tutorial on particle filtering and smoothing: fifteen years later. In: Crisan D, Rozovsky B (eds) Nonlinear filtering handbook. Oxford University Press, Oxford, UKGoogle Scholar
  6. Giri F, Bai E-W (eds) (2010) Block-oriented nonlinear system identification. Volume 404 of lecture notes in control and information sciences. Springer, Berlin/HeidelbergGoogle Scholar
  7. Gordon NJ, Salmond DJ, Smith AFM (1993) Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proc Radar Signal Process 140:107–113CrossRefGoogle Scholar
  8. Hjort N, Holmes C, Müller P, Walker S (eds) (2010) Bayesian nonparametrics. Cambridge University Press, Cambridge/New YorkMATHGoogle Scholar
  9. Kantas N, Doucet A, Singh S, Maciejowski J (2009) An overview of sequential Monte Carlo methods for parameter estimation in general state-space models. In: Proceedings of the 15th IFAC symposium on system identification, Saint-Malo, pp 774–785Google Scholar
  10. Lindsten F, Schön TB (2013) Backward simulation methods for Monte Carlo statistical inference. Found Trends Mach Learn 6(1):1–143CrossRefMATHGoogle Scholar
  11. Lindsten F, Schön TB, Jordan MI (2013) Bayesian semiparametric Wiener system identification. Automatica 49(7):2053–2063CrossRefMathSciNetGoogle Scholar
  12. Poyiadjis G, Doucet A, Singh SS (2011) Particle approximations of the score and observed information matrix in state space models with application to parameter estimation. Biometrika 98(1):65–80CrossRefMATHMathSciNetGoogle Scholar
  13. Rasmussen CE, Williams CKI (2006) Gaussian processes for machine learning. MIT, CambridgeMATHGoogle Scholar
  14. Robert CP, Casella G (2004) Monte Carlo statistical methods, 2nd edn. Springer, New YorkCrossRefMATHGoogle Scholar
  15. Schön TB, Lindsten F (2014) Learning of dynamical systems – particle filters and Markov chain methods. Forthcoming book, see user.it.uu.se/~thosc112/lds
  16. Schön TB, Wills A, Ninness B (2011) System identification of nonlinear state-space models. Automatica 47(1):39–49CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  1. 1.Department of Information TechnologyUppsala UniversityUppsalaSweden