Skip to main content

Image-Based Estimation for Robotics and Autonomous Systems

  • Living reference work entry
  • First Online:
Encyclopedia of Systems and Control
  • 274 Accesses

Abstract

This entry discusses methods to estimate the structure of the objects/scene observed using a series of moving camera images. To recover the structure, it is sufficient to estimate the depth of the feature points on the object. To this end, two observer-based depth estimation methods are presented. The first method is a concurrent learning-based observer for estimating the depth of the static feature points and the second method is an unknown input observer for estimating the depth of the moving feature points.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Avidan S, Shashua A (2000) Trajectory triangulation: 3D reconstruction of moving points from a monocular image sequence. IEEE Trans Pattern Anal Mach Intell 22(4):348–357

    Article  Google Scholar 

  • Chaumette F, Hutchinson S (2006) Visual servo control. I. Basic approaches. IEEE Robot Autom Mag 13(4): 82–90

    Article  Google Scholar 

  • Chen X, Kano H (2004) State observer for a class of nonlinear systems and its application to machine vision. IEEE Trans Autom Control 49(11):2085–2091

    Article  MathSciNet  Google Scholar 

  • Chowdhary G, Johnson E (2010) Concurrent learning for convergence in adaptive control without persistency of excitation. In: 2010 49th IEEE conference on decision and control (CDC). IEEE, pp 3674–3679

    Google Scholar 

  • Chowdhary G, Yucelen T, Muhlegg M, Johnson EN (2013) Concurrent learning adaptive control of linear systems with exponentially convergent bounds. Int J Adapt Control Signal Process 27(4):280–301

    Article  MathSciNet  Google Scholar 

  • Dani A, Kan Z, Fischer N, Dixon WE (2011) Structure estimation of a moving object using a moving camera: an unknown input observer approach. In: IEEE conference on decision and control, Orlando, pp 5005–5010

    Google Scholar 

  • Dani A, Fischer N, Kan Z, Dixon W (2012a) Globally exponentially stable observer for vision-based range estimation. Mechatronics 22(4):381–389

    Article  Google Scholar 

  • Dani A, Fisher N, Dixon WE (2012b) Single camera structure and motion. IEEE Trans Autom Control 57(1): 241–246

    Article  MathSciNet  Google Scholar 

  • Dixon WE, Fang Y, Dawson DM, Flynn TJ (2003) Range identification for perspective vision systems. IEEE Trans Autom Control 48:2232–2238

    Article  MathSciNet  Google Scholar 

  • Fathian K, Ramirez-Paredes JP, Doucette EA, Curtis JW, Gans NR (2018) QuEst: a quaternion-based approach for camera motion estimation from minimal feature points. IEEE Robot Autom Lett 3(2):857–864

    Article  Google Scholar 

  • Hartley R, Zisserman A (2003) Multiple view geometry in computer vision. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Horn B, Klaus B, Horn P (1986) Robot vision. MIT press

    Google Scholar 

  • Hu G, Aiken D, Gupta S, Dixon W (2008) Lyapunov-based range identification for a paracatadioptric system. IEEE Trans Autom Control 53(7):1775–1781

    Article  MathSciNet  Google Scholar 

  • Jankovic M, Ghosh BK (1995) Visually guided ranging from observations of points, lines and curves via an identifier based nonlinear observer. Syst Control Lett 25(1):63–73

    Article  MathSciNet  Google Scholar 

  • Kamalapurkar R, Reish B, Chowdhary G, Dixon WE (2017) Concurrent learning for parameter estimation using dynamic state-derivative estimators. IEEE Trans Autom Control 62(7):3594–3601

    Article  MathSciNet  Google Scholar 

  • Kaminski JY, Teicher M (2004) A general framework for trajectory triangulation. J Math Imaging Vis 21(1–2): 27–41

    Article  MathSciNet  Google Scholar 

  • Matthies L, Kanade T, Szeliski R (1989) Kalman filter-based algorithms for estimating depth from image sequences. Int J Comput Vis 3(3):209–238

    Article  Google Scholar 

  • Parikh A, Kamalapurkar R, Dixon WE (2018) Target tracking in the presence of intermittent measurements via motion model learning. IEEE Trans Robot 34(3):805–819

    Article  Google Scholar 

  • Ravichandar H, Dani A (2019) Learning pose dynamics from demonstrations via contraction analysis. Auton Robots 43(4):897–912

    Article  Google Scholar 

  • Rotithor G, Saltus R, Kamalapurkar R, Dani AP (2019) Observer design for structure from motion using concurrent learning. In: Proceedings of American control conference

    Book  Google Scholar 

  • Spica R, Robuffo Giordano P, Chaumette F (2017) Coupling active depth estimation and visual servoing via a large projection operator. Int J Robot Res 36(11): 1177–1194

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Dani .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag London Ltd., part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Dani, A.P. (2020). Image-Based Estimation for Robotics and Autonomous Systems. In: Baillieul, J., Samad, T. (eds) Encyclopedia of Systems and Control. Springer, London. https://doi.org/10.1007/978-1-4471-5102-9_100151-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5102-9_100151-1

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5102-9

  • Online ISBN: 978-1-4471-5102-9

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics