Skip to main content

Scanning Probe Microscope Imaging Control

  • Living reference work entry
  • First Online:
Encyclopedia of Systems and Control
  • 245 Accesses

Abstract

Scanning probe microscope (SPM) imaging control is to maintain a micromachined cantilever tip at the desired position with respect to the sample at nanoscale resolution while the probe is scanning the sample. The main objective is to drive the cantilever probe using piezoelectric actuators to follow the sample topography profile during the scanning process. Beyond conventional PI-feedback control, different approaches have been developed, ranging from robust control, adaptive control, to inversion-based feedforward-feedback control and iterative-based feedforward-feedback control. These developments have demonstrated various levels of improvements over PI-control.

Supported by NSF CAREER Award 1751503 (Ren) and NSF Grants 1353890 and 1663055 (Zou)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Andersson SB (2007) Curve tracking for rapid imaging in AFM. IEEE Trans Nanobiosci 6(4):354–361

    Article  Google Scholar 

  • Braker RA, Luo Y, Pao LY, Andersson SB (2018) Hardware demonstration of atomic force microscopy imaging via compressive sensing and μ-path scans. In: 2018 annual American control conference (ACC). IEEE, pp 6037–6042

    Google Scholar 

  • Clayton GM, Tien S, Leang KK, Zou Q, Devasia S (2009) A review of feedforward control approaches in nanopositioning for high-speed SPM. ASME J Dyn Syst Meas Control 131:061101–1 to 061101–19

    Google Scholar 

  • Croft D, Shedd G, Devasia S (2001) Creep, hysteresis, and vibration compensation for piezoactuators: atomic force microscopy application. ASME J Dyn Syst Meas Control 123(1):35–43

    Article  Google Scholar 

  • Kim K, Zou Q (2013) A modeling-free inversion-based iterative feedforward control for precision output tracking of linear time-invariant systems. IEEE/ASME Trans Mechatron 18(6):1767–1777

    Article  Google Scholar 

  • Li T, Zou Q (2017) Simultaneous topography imaging and broadband nanomechanical mapping on atomic force microscope. Nanotechnology 28(50):

    Google Scholar 

  • Li T, Zou Q, Singer J, Su C (2019) Adaptive simultaneous topography and broadband nanomechanical mapping of heterogeneous materials on atomic force microscope. In: American control conference, ACC 2019. IEEE

    Google Scholar 

  • Liu Y, Mollaeian K, Ren J (2019) Finite element modeling of living cells for AFM indentation-based biomechanical characterization. Micron, Elsevier, 116:108–115

    Article  Google Scholar 

  • Mahmood I, Moheimani SR (2009) Fast spiral-scan atomic force microscopy. Nanotechnology 20(36):365503

    Article  Google Scholar 

  • Quant M, Elizalde H, Flores A, Ramírez R, Orta P, Song G (2009) A comprehensive model for piezoceramic actuators: modelling, validation and application. Smart Mater Struct 18(12):125011

    Article  Google Scholar 

  • Rana M, Pota HR, Petersen IR (2012) Model predictive control of atomic force microscope for fast image scanning. In: 2012 IEEE 51st annual conference on decision and control (CDC). IEEE, pp 2477–2482

    Google Scholar 

  • Ren J, Zou Q (2014) High-speed adaptive contact-mode atomic force microscopy imaging with near-minimum-force. Rev Sci Instrum 85(7):073706

    Article  Google Scholar 

  • Ren J, Zou Q, Li B, Lin Z (2014) High-speed atomic force microscope imaging: Adaptive multiloop mode. Physical Review E 90(1):012405

    Article  Google Scholar 

  • Ren J, Zou Q (2018) Adaptive-scanning, near-minimum-deformation atomic force microscope imaging of soft sample in liquid: live mammalian cell example. Ultramicroscopy 186:150–157

    Article  Google Scholar 

  • Ruppert MG, Karvinen KS, Wiggins SL, Moheimani SR (2016) A kalman filter for amplitude estimation in high-speed dynamic mode atomic force microscopy. IEEE Trans Control Syst Technol 24(1):276–284

    Article  Google Scholar 

  • Schitter G, Stemmer A, Allg\(\ddot {o}\)wer F (2004) Robust two-degree-of-freedom control of an atomic force microscope. Asian J Control 6(2):156–163

    Google Scholar 

  • Sebastian A, Salapaka S (2005) Design methodologies for robust nano-positioning. IEEE Trans Control Syst Technol 13(6):868–876

    Article  Google Scholar 

  • Shibata M, Yamashita H, Uchihashi T, Kandori H, Ando T (2010) High-speed atomic force microscopy shows dynamic molecular processes in photoactivated bacteriorhodopsin. Nat Nanotechnol 5(3):208–212

    Article  Google Scholar 

  • Tien S, Zou Q, Devasia S (2005) Control of dynamics-coupling effects in piezo-actuator for high-speed AFM operation. IEEE Trans Control Syst Technol 13(6):921–931

    Article  Google Scholar 

  • Wang Z, Zou Q (2015) A modeling-free differential-inversion-based iterative control approach to simultaneous hysteresis-dynamics compensation: high-speed large-range motion tracking example. In: American control conference (ACC). IEEE, pp 3558–3563

    Google Scholar 

  • Wang J, Zou Q (2018) Rapid probe engagement and withdrawal with online minimized probe-sample interaction force in atomic force microscopy. In: ASME 2018 dynamic systems and control conference, DSCC 2018. American Society of Mechanical Engineers (ASME)

    Google Scholar 

  • Wu Y, Zou Q (2007) Iterative control approach to compensate for both the hysteresis and the dynamics effects of piezo actuators. IEEE Trans Control Syst Technol 15:936–944

    Article  Google Scholar 

  • Wu Y, Zou Q (2009) An iterative based feedforward-feedback control approach to high-speed atomic force microscope imaging. ASME J Dyn Syst Meas Control 131:061105–1 to 061105–9

    Google Scholar 

  • Xie S, Ren J (2019) High-speed AFM imaging via iterative learning-based model predictive control. Mechatronics 57:86–94

    Article  Google Scholar 

  • Yong Y, Moheimani S, Petersen I (2010) High-speed cycloid-scan atomic force microscopy. Nanotechnology 21(36):365503

    Article  Google Scholar 

  • Zhang Y, Fang Y, Yu J, Dong X (2011) Note: a novel atomic force microscope fast imaging approach: variable-speed scanning. Rev Sci Instrum 82(5):056103

    Article  Google Scholar 

  • Zou Q, Leang K, Sadoun E, Reed M, Devasia S (2004) Control issues in high-speed AFM for biological applications: collagen imaging example. Asian J Control 6(2):164–178

    Article  Google Scholar 

  • Zou Q, Ren J, Liu J (2017) High speed adaptive-multi-loop mode imaging atomic force microscopy (13 July 2017), US Patent App. 15/326,237

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingze Zou .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag London Ltd., part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ren, J., Zou, Q. (2020). Scanning Probe Microscope Imaging Control. In: Baillieul, J., Samad, T. (eds) Encyclopedia of Systems and Control. Springer, London. https://doi.org/10.1007/978-1-4471-5102-9_100086-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5102-9_100086-1

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5102-9

  • Online ISBN: 978-1-4471-5102-9

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics