Skip to main content

Control Systems for Nanopositioning

  • Living reference work entry
  • First Online:
Book cover Encyclopedia of Systems and Control

Abstract

An essential role in nanotechnology applications is played by nanopositioning control systems, which allow nanometer-scale precision and accuracy at dimensions of tens of nanometers or less. Nanopositioners are precision mechatronics systems aiming at moving or identifying objects over a certain distance with a resolution of the order of a nanometer. In nanopositioners, actuation, position sensing, and feedback control are the key components that determine how successfully the stringent requirements on resolution, accuracy, stability, and bandwidth are achieved. Historically, nanopositioning found its earlier applications in scanning probe microscopy. Today it turns out to be increasingly important for lithography tools, semiconductor inspection systems, molecular biology, metrology, nanofabrication, and nanomanufacturing. Moreover, nanopositioning control represents a fundamental requirement in storage systems ranging from probe-based storage devices to mechatronic tape drive systems to achieve ultrahigh areal density and storage capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Ando T, Uchihashi T, Kodera N, Yamamoto D, Taniguchi M, Miyagi A, Yamashita H (2007) Highspeed atomic force microscopy for observing dynamic biomolecular processes. J Mol Recognit Interdiscip J 20(6):448–458

    Article  Google Scholar 

  • Cherubini G, Chung CC, Messner WC, Moheimani SR (2012) Control methods in data-storage systems. IEEE Trans Control Syst Technol 20(2):296–322

    Article  Google Scholar 

  • Devasia S, Eleftheriou E, Moheimani SR (2007) A survey of control issues in nanopositioning. IEEE Trans Control Syst Technol 15(5):802–823

    Article  Google Scholar 

  • Eleftheriou E, Antonakopoulos T, Binnig GK, Cherubini G, Despont M, Dholakia A, Duerig U, Lantz MA, Pozidis H, Rothuizen HE, Vettiger P (2003) Millipede – a MEMS-based scanning-probe data-storage system. IEEE Trans Magn 39(2):938–945

    Article  Google Scholar 

  • Furrer S, Lantz MA, Reininger P, Pantazi A, Rothuizen HE, Cideciyan RD, Cherubini G, Haeberle W, Eleftheriou E, Tachibana J, Sekiguchi N (2018a) 201 Gb/in2 recording areal density on sputtered magnetic tape. IEEE Trans Magn 54(2):1–8

    Article  Google Scholar 

  • Furrer S, Pantazi A, Cherubini G, Lantz MA (2018b) Compressional wave disturbance suppression for nanoscale track-following on flexible tape media. In: Proceedings of the American Control Conference, Milwaukee, pp 6678–6683

    Google Scholar 

  • Oomen T, van Herpen R, Quist S, van de Wal M, Bosgra O, Steinbuch M (2014) Connecting system identification and robust control for next-generation motion control of a wafer stage. IEEE Trans Control Syst Technol 22(1):102–118

    Article  Google Scholar 

  • Pantazi A, Furrer S, Rothuizen HE, Cherubini G, Jelitto J, Lantz MA (2015) Nanoscale track-following for tape storage. In: Proceedings of the American Control Conference, Chicago, pp 2837–2843

    Google Scholar 

  • Salapaka SM, Sebastian A, Cleveland JP, Salapaka MV (2002) High bandwidth nano-positioner: a robust control approach. Rev Sci Instrum 73(9):3232–3241

    Article  Google Scholar 

  • Sebastian A, Salapaka SM, Cleveland JP (2003) Robust control approach to atomic force microscopy. In: Proceedings of the IEEE International Conference on Decision and Control, Hawaii, pp 3443–3444

    Google Scholar 

  • Sebastian A, Pantazi A, Pozidis H, Eleftheriou E (2008) Nanopositioning for probe-based data storage. IEEE Control Syst Mag 28(4):26–35

    Article  MathSciNet  Google Scholar 

  • Tajaddodianfar F, Moheimani SOR, Randall JN (2018) Scanning tunneling microscope control: a self-tuning PI controller based on online local barrier height estimation. IEEE Trans Control Syst Technol 27(5): 2004–2015

    Article  Google Scholar 

  • Tuma T, Sebastian A, Lygeros J, Pantazi A (2013) The four pillars of nanopositioning for scanning probe microscopy: the position sensor, the scanning device, the feedback controller, and the reference trajectory. IEEE Control Syst Mag 33(6):68–85

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Cherubini .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag London Ltd., part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Cherubini, G., Pantazi, A., Sebastian, A., Lantz, M., Eleftheriou, E. (2019). Control Systems for Nanopositioning. In: Baillieul, J., Samad, T. (eds) Encyclopedia of Systems and Control. Springer, London. https://doi.org/10.1007/978-1-4471-5102-9_100045-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5102-9_100045-1

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5102-9

  • Online ISBN: 978-1-4471-5102-9

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics