Skip to main content

Physical Human-Robot Interaction

  • Living reference work entry
  • First Online:
Book cover Encyclopedia of Systems and Control
  • 332 Accesses

Abstract

Robots and humans can nowadays share their workspace safely. This possibility has been enabled by a combination of technologies leading to the so-called cobots, robots that can physically interact with humans to collaborate with them in the execution of several tasks in different application domains, from manufacturing to healthcare, from inspection to maintenance. This chapter reviews all such technologies, which range from innovative actuation systems, such as series elastic actuators or highly integrated torque controlled joints, to sensing systems, such as joint torque sensors and force/tactile devices or 3D vision systems for tracking of humans acting in the robot workspace. Another major technological advancement that enabled safe physical human-robot interaction (pHRI) is the compliance control of robotic manipulators in conjunction with smart collision detection and reaction strategies to be adopted in case of accidental human-robot contacts. Programming of robots that are allowed to physically interact with humans is by far more intuitive than standard programming procedures and, again, this is enabled by smart technologies like haptic gestures recognition in combination with advanced torque control or tactile skin devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Albu-Schäffer A, Ott C, Hirzinger G (2007) A unified passivity-based control framework for position, torque and impedance control of flexible joint robots. Int J Robot Res 26(1):23–39

    Article  Google Scholar 

  • Bauer A, Wollherr D, Buss M (2008) Human-robot collaboration: a survey. Int J Humanoid Robot 5(1):47–66

    Article  Google Scholar 

  • Cannata G, Maggiali M, Metta G, Sandini G (2008) An embedded artificial skin for humanoid robots. In: Proceedings of IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, Seoul, pp 434–438

    Google Scholar 

  • Cirillo A, Cirillo P, De Maria G, Natale C, Pirozzi S (2014) An artificial skin based on optoelectronic technology. Sensors Actuators A Phys 212:110–122

    Article  Google Scholar 

  • Cirillo A, Ficuciello F, Natale C, Pirozzi S, Villani L (2016) A conformable force/tactile skin for physical human-robot interaction. IEEE Robot Autom Lett 1(1):41–48

    Article  Google Scholar 

  • Cirillo A, Cirillo P, De Maria G, Natale C, Pirozzi S (2017) A distributed tactile sensor for intuitive human-robot interfacing. J Sens 2017:14

    Article  Google Scholar 

  • Colgate J, Peshkin M (1999) Cobots. U.S. Patent 5,952,796

    Google Scholar 

  • De Luca A, Albu-Schäffer A, Haddadin S, Hirzinger G (2006) Collision detection and safe reaction with the dlr-iii lightweight manipulator arm. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 1623–1630

    Google Scholar 

  • De Santis A, Siciliano B, De Luca A, Bicchi A (2008) An atlas of physical human-robot interaction. Mech Mach Theory 43(3):253–270

    Article  Google Scholar 

  • Dietrich A, Wu X, Bussmann K, Ott C, Albu-Schäffer A, Stramigioli S (2017) Passive hierarchical impedance control via energy tanks. IEEE Robot Autom Lett 2(2):522–529

    Article  Google Scholar 

  • Dietrich A, Ott C, Park J (2018) The hierarchical operational space formulation: stability analysis for the regulation case. IEEE Robot Autom Lett 3(2):1120–1127

    Article  Google Scholar 

  • Featherstone R, Khatib O (1997) Load independence of the dynamically consistent inverse of the jacobian matrix. Int J Robot Res 16(2):168–170

    Article  Google Scholar 

  • Ficuciello F, Villani L, Siciliano B (2015) Variable impedance control of redundant manipulators for intuitive human-robot physical interaction. IEEE Trans Robot 31(4):850–863

    Article  Google Scholar 

  • Garcia E, Arevalo J, Muñoz G, de Santos PG (2011) Combining series elastic actuation and magneto-rheological damping for the control of agile locomotion. Robot Auton Syst 59(10):827–839

    Article  Google Scholar 

  • Goodrich MA, Schultz AC (2007) Human-robot interaction: a survey. now Publisher Inc., Hanover, MA

    Article  Google Scholar 

  • Gordon SJ, Townsend WT (1989) Integration of tactile force and joint torque information in a whole-arm manipulator. In: Proceedings, 1989 International Conference on Robotics and Automation, vol 1, pp 464–469

    Google Scholar 

  • Haddadin S, Croft E (2016) Physical human-robot interaction, 2nd edn. Springer, Berlin Heidelberg, pp 1835–1874

    Chapter  Google Scholar 

  • Haddadin S, Albu-Schäffer A, De Luca A, Hirzinger G (2008) Collision detection and reaction: a contribution to safe physical human-robot interaction. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 3356–3363

    Google Scholar 

  • Haddadin S, De Luca A, Albu-Schäffer A (2017) Robot collisions: a survey on detection, isolation, and identification. IEEE Trans Robot 33(6):1292–1312

    Article  Google Scholar 

  • Hawkins KP, Nam Vo, Bansal S, Bobick AF (2013) Probabilistic human action prediction and wait-sensitive planning for responsive human-robot collaboration. In: 2013 13th IEEE-RAS International Conference on Humanoid Robots, pp 499–506

    Google Scholar 

  • Hirzinger G, Sporer N, Albu-Schäffer A, Hahnle M, Krenn R, Pascucci A, Schedl M (2002) Dlr’s torque-controlled light weight robot iii-are we reaching the technological limits now? In: Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292), vol 2, pp 1710–1716

    Google Scholar 

  • Hirzinger G, Brunner B, Landzettel K, Sporer N, Butterfaß J, Schedl M (2003) Space robotics—dlr’s telerobotic concepts, lightweight arms and articulated hands. Auton Robot 14(2):127–145

    Article  Google Scholar 

  • ISO/TC 299 Robotics (2011) ISO 10218-1:2011 robots and robotic devices – safety requirements for industrial robots – part 1: robots. International Organization for Standardization

    Google Scholar 

  • ISO/TC 299 Robotics (2016) ISO/TS 15066:2016 – robots and robotic devices – collaborative robots. International Organization for Standardization

    Google Scholar 

  • Kinugawa J, Kanazawa A, Arai S, Kosuge K (2017) Adaptive task scheduling for an assembly task coworker robot based on incremental learning of human’s motion patterns. IEEE Robot Autom Lett 2(2):856–863

    Article  Google Scholar 

  • Leidner DS (2019) Cognitive reasoning for compliant robot manipulation. Springer, Cham

    Book  Google Scholar 

  • Leidner DS, Dietrich A, Beetz M, Albu-Schäffer A (2016) Knowledge-enabled parameterization of whole-body control strategies for compliant service robots. Auton Robot 40(3):519–536

    Article  Google Scholar 

  • Mainprice J, Berenson D (2013) Human-robot collaborative manipulation planning using early prediction of human motion. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 299–306

    Google Scholar 

  • Nikolaidis S, Hsu D, Srinivasa S (2017) Human-robot mutual adaptation in collaborative tasks: models and experiments. Int J Robot Res 36(5–7):618–634

    Article  Google Scholar 

  • Pratt G, Williamson M, Dillworth P, Pratt J, Wright A (1997) Stiffness isn’t everything. Lecture notes in control and information sciences, vol 223. Springer, London/Berlin, pp 253–262

    Google Scholar 

  • Sentis L, Khatib O (2005) Synthesis of whole-body behaviors through hierarchical control of behavioral primitives. Int J Humanoid Robot 02(04):505–518

    Article  Google Scholar 

  • Spong MW (1987) Modeling and control of elastic joint robots. J Dyn Syst Meas Control 109(4):310–318

    Article  Google Scholar 

  • Villani V, Pini F, Leali F, Secchi C (2018) Survey on human-robot collaboration in industrial settings: safety, intuitive interfaces and applications. Mechatronics 55:248–266

    Article  Google Scholar 

  • Wolf S, Eiberger O, Hirzinger G (2011) The dlr fsj: energy based design of a variable stiffness joint. In: 2011 IEEE International Conference on Robotics and Automation, pp 5082–5089

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ciro Natale .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag London Ltd., part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Natale, C. (2020). Physical Human-Robot Interaction. In: Baillieul, J., Samad, T. (eds) Encyclopedia of Systems and Control. Springer, London. https://doi.org/10.1007/978-1-4471-5102-9_100033-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5102-9_100033-1

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5102-9

  • Online ISBN: 978-1-4471-5102-9

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics