Skip to main content

Surgical Robotics

  • Living reference work entry
  • First Online:
Encyclopedia of Systems and Control
  • 38 Accesses

Abstract

Surgical robotics has not yet reached a level of maturity in terms of system autonomy. Autonomous control methods are not sufficiently trusted because of safety-critical and high-consequence tasks to perform. On the other hand, remote teleoperation of surgical robotic systems imposes extreme cognitive loading to the surgeon, causing severe fatigue and, consequently, a progressive degeneration in performance. This entry discusses the recent advancements and future expectations of automation in surgical robotics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Ataka A, Abrar T, Putzu F, Godaba H, Althoefer K (2020) Model-based pose control of inflatable eversion robot with variable stiffness. IEEE Robot Autom Lett 5(2):3398–3405

    Article  Google Scholar 

  • Attia M, Hossny M, Nahavandi S, Dalvand M, Asadi H (2018) Towards trusted autonomous surgical robots. In: IEEE international conference on systems, man, and cybernetics, pp 4083–4088

    Google Scholar 

  • Becker BC, MacLachlan RA, Hager GD, Riviere CN (2011) Handheld micromanipulation with vision-based virtual fixtures. In: IEEE international conference on robotics and automation, pp 4127–4132

    Google Scholar 

  • Bowyer SA, Davies BL, Rodriguez y Baena F (2014) Active constraints/virtual fixtures: a survey. IEEE Trans Robot 30(1):138–157

    Google Scholar 

  • Clancy N, Arya S, Stoyanov D, Singh M, Hanna G, Elson D (2015) Intraoperative measurement of bowel oxygen saturation using a multispectral imaging laparoscope. Biomed Opt Express 6(10):4179–4190

    Article  Google Scholar 

  • de Sio FS, van den Hoven J (2018) Meaningful human control over autonomous systems: a philosophical account. Front Robot AI 5:15

    Article  Google Scholar 

  • Dhillon SS, Vitiello MS, Linfield EH, Davies AG, Hoffmann MC, Booske J, Paoloni C, Gensch M, Weightman P, Williams GP, Castro-Camus E, Cumming DRS, Simoens F, Escorcia-Carranza I, Grant J, Lucyszyn S, Kuwata-Gonokami M, Konishi K, Koch M, Schmuttenmaer CA, Cocker TL, Huber R, Markelz AG, Taylor ZD, Wallace VP, Zeitler JA, Sibik J, Korter TM, Ellison B, Rea S, Goldsmith P, Cooper KB, Appleby R, Pardo D, Huggard PG, Krozer V, Shams H, Fice M, Renaud C, Seeds A, Stöhr A, Naftaly M, Ridler N, Clarke R, Cunningham JE, Johnston MB (2017) The 2017 terahertz science and technology roadmap. J Phys D Appl Phys 50(4):043001

    Article  Google Scholar 

  • Dieterich S, Gibbs IC (2011) The cyberknife in clinical use: current roles, future expectations. Front Radiation Therapy Oncology 43:181–194

    Article  Google Scholar 

  • Fabelo H, Ortega S, Ravi D, Kiran B, Sosa C, Bulters D, Callicó G, Bulstrode H, Szolna A, Piñeiro J, Kabwama S, Madroñal D, Lazcano R, J-O’Shanahan A, Bisshopp S, Hernández M, Báez A, Yang G, Stanciulescu B, Salvador R, Juárez E, Sarmiento R (2018) Spatio-spectral classification of hyperspectral images for brain cancer detection during surgical operations. PLoS One 13(3):e0193721

    Article  Google Scholar 

  • Ficuciello F, Tamburrini G, Arezzo A, Villani L, Siciliano B (2019) Autonomy in surgical robots and its meaningful human control. Paladyn J Behav Robot 10(1): 30–43

    Article  Google Scholar 

  • Fontanelli GA, Ficuciello F, Villani L, Siciliano B (2017) Modelling and identification of the da vinci research kit robotic arms. In: IEEE/RSJ international conference on intelligent robots and systems, pp 1464–1469

    Google Scholar 

  • Fontanelli GA, Selvaggio M, Buonocore LR, Ficuciello F, Villani L, Siciliano B (2018) A new laparoscopic tool with in-hand rolling capabilities for needle reorientation. IEEE Robot Autom Lett 3(3):2354–2361

    Article  Google Scholar 

  • Fontanelli G, Selvaggio M, Ferro M, Ficuciello F, Vendittelli M, Siciliano B (2019) Portable dVRK: an augmented v-rep simulator of the da vinci research kit. Acta Polytech Hung 16(8):79–98

    Google Scholar 

  • Fontanelli GA, Buonocore LR, Ficuciello F, Villani L, Siciliano B (2020) An external force sensing system for minimally invasive robotic surgery. IEEE/ASME Trans Mechatron 25(3):1543–1554

    Article  Google Scholar 

  • Grazioso S, Di Gironimo G, Siciliano S (2019) A geometrically exact model for soft continuum robots: the finite element deformation space formulation. Soft Robot 6(6):790–811

    Article  Google Scholar 

  • Hagag B, Abovitz R, Kang H, Schmitz B, Conditt M (2011) RIO: robotic-arm interactive orthopedic system MAKOplasty: user interactive haptic orthopedic robotics. In: Surgical robotics. Springer, Boston

    Book  Google Scholar 

  • Haidegger T (2019) Autonomy for surgical robots: concepts and paradigms. IEEE Trans Med Robot Bionics 1(2):65–76

    Article  Google Scholar 

  • Hirche S, Buss M (2012) Human-oriented control for haptic teleoperation. Proc IEEE 100(3):623–647

    Article  Google Scholar 

  • Hoeckelmann M, Rudas IJ, Fiorini P, Kirchner F, Haidegger T (2015) Current capabilities and development potential in surgical robotics. Int J Adv Robot Syst 12(5):61–100

    Article  Google Scholar 

  • Jackson RC, Yuan R, Chow D, Newman W, Çavuşoglu MC (2015) Automatic initialization and dynamic tracking of surgical suture threads. In: IEEE international conference on robotics and automation, pp 4710–4716

    Google Scholar 

  • Jakopec M, Harris SJ, y Baena FR, Gomes P, Davies BL (2002) Acrobot: a “hands-on” robot for total knee replacement surgery. In: 7th international workshop on advanced motion control, pp 116–120

    Google Scholar 

  • Jansen-Winkeln B, Maktabi M, Takoh J, Rabe S, Barberio M, Köhler H, Neumuth T, Melzer A, Chalopin C, Gockel I (2018) Hyperspectral imaging of gastrointestinal anastomoses. Der Chirurg; Zeitschrift fur alle Gebiete der operativen Medizen 89(9):717–725

    Article  Google Scholar 

  • Kassahun Y, Yu B, Tibebu AT, Stoyanov D, Giannarou S, Metzen JH, Poorten EBV (2015) Surgical robotics beyond enhanced dexterity instrumentation: a survey of machine learning techniques and their role in intelligent and autonomous surgical actions. Int J Comput Assist Radiol Surg 11:553–568

    Article  Google Scholar 

  • Kassahun Y, Yu B, Tibebu A, Stoyanov D, Giannarou S, Metzen JH, Poorten EV (2016) Surgical robotics beyond enhanced dexterity instrumentation: a survey of machine learning techniques and their role in intelligent and autonomous surgical actions. Int J Comput Assist Radiol Surg 11(4):553–568

    Article  Google Scholar 

  • Kazanzides P, Chen Z, Deguet A, Fischer GS, Taylor RH, DiMaio SP (2014) An open-source research kit for the da vinci surgical system. In: IEEE international conference on robotics and automation, pp 6434–6439

    Google Scholar 

  • Kumashiro R, Konishi K, Chiba T, Akahoshi T, Nakamura S, Murata M, Tomikawa M, Matsumoto T, Maehara Y, Hashizume M (2016) Integrated endoscopic system based on optical imaging and hyperspectral data analysis for colorectal cancer detection. Anticancer Res 36(8):3925–3932

    Google Scholar 

  • Lu G, Fei B (2014) Medical hyperspectral imaging: a review. J Biomed Opt 19(1):1–24

    Article  Google Scholar 

  • Malik D, Palaniappan M, Fisac J, Hadfield-Menell D, Russell S, Dragan A (2018) An efficient, generalized Bellman update for cooperative inverse reinforcement learning. In: Dy J, Krause A (eds) Proceedings of the 35th international conference on machine learning, PMLR, Stockholm, vol 80, pp 3394–3402

    Google Scholar 

  • Moccia R, Selvaggio M, Villani L, Siciliano B, Ficuciello F (2019) Vision-based virtual fixtures generation for robotic-assisted polyp dissection procedures. In: IEEE/RSJ international conference on intelligent robots and systems, pp 7934–7939

    Google Scholar 

  • Moccia R, Iacono C, Siciliano B, Ficuciello F (2020) Vision-based dynamic virtual fixtures for tools collision avoidance in robotic surgery. IEEE Robot Autom Lett 5(2):1650–1655

    Article  Google Scholar 

  • Moustris G, Hiridis S, Deliparaschos K, Konstantinidis K (2011) Evolution of autonomous and semi-autonomous robotic surgical systems: a review of the literature. Int J Med Robot Comput Assist Surg 7(4):375–392

    Article  Google Scholar 

  • Murali A, Sen S, Kehoe B, Garg A, McFarland S, Patil S, Boyd WD, Lim S, Abbeel P, Goldberg K (2015) Learning by observation for surgical subtasks: multilateral cutting of 3D viscoelastic and 2D orthotropic tissue phantoms. In: IEEE international conference on robotics and automation, pp 1202–1209

    Google Scholar 

  • Murali A, Garg A, Krishnan S, Pokorny FT, Abbeel P, Darrell T, Goldberg K (2016) Tsc-dl: unsupervised trajectory segmentation of multi-modal surgical demonstrations with deep learning. In: IEEE international conference on robotics and automation, pp 4150–4157

    Google Scholar 

  • Netravali N, Börner M, Bargar W (2016) The use of ROBODOC in total hip and knee arthroplasty. In: Computer-assisted musculoskeletal surgery. Springer, Cham

    Book  Google Scholar 

  • Padoy N, Hager GD (2011) Human-machine collaborative surgery using learned models. In: IEEE international conference on robotics and automation, pp 5285–5292

    Google Scholar 

  • Reiley CE, Plaku E, Hager GD (2010) Motion generation of robotic surgical tasks: learning from expert demonstrations. In: Annual international conference of the IEEE engineering in medicine and biology, pp 967–970

    Google Scholar 

  • Selvaggio M, Fontanelli GA, Ficuciello F, Villani L, Siciliano B (2018) Passive virtual fixtures adaptation in minimally invasive robotic surgery. IEEE Robot Autom Lett 3(4):3129–3136

    Article  Google Scholar 

  • Selvaggio M, Fontaneli G, Marrazzo V, Bracale U, Irace A, Breglio G, Villani L, Siciliano B, Ficuciello F (2019a) The MUSHA underactuated hand for robot-aided minimally invasive surgery. Int J Med Robot Comput Assist Surg 15(3):e1981

    Article  Google Scholar 

  • Selvaggio M, Ghalamzan A, Moccia R, Ficuciello F, Siciliano B (2019b) Haptic-guided shared control for needle grasping optimization in minimally invasive robotic surgery. In: IEEE/RSJ international conference on intelligent robots and systems, pp 3617–3623

    Google Scholar 

  • Sen S, Garg A, Gealy DV, McKinley S, Jen Y, Goldberg K (2016) Automating multi-throw multilateral surgical suturing with a mechanical needle guide and sequential convex optimization. In: IEEE international conference on robotics and automation, pp 4178–4185

    Google Scholar 

  • Taylor RH, Menciassi A, Fichtinger G, Fiorini P, Dario P (2016) Medical robotics and computer-integrated surgery. In: Siciliano B, Khatib O (eds) Springer handbook of robotics. Springer International Publishing, Cham, pp 1657–1683

    Chapter  Google Scholar 

  • van den Berg J, Miller S, Duckworth D, Hu H, Wan A, Fu X, Goldberg K, Abbeel P (2010) Superhuman performance of surgical tasks by robots using iterative learning from human-guided demonstrations. In: IEEE international conference on robotics and automation, pp 2074–2081

    Google Scholar 

  • Varma T, Eldridge P (2006) Use of the neuromate stereotactic robot in a frameless mode for functional neurosurgery. Int J Med Robot Comput Assist Surg 2(2):107–113

    Article  Google Scholar 

  • Yang G-Z, Cambias J, Cleary K, Daimler E, Drake J, Dupont PE, Hata N, Kazanzides P, Martel S, Patel RV, Santos VJ, Taylor RH (2017) Medical robotics—regulatory, ethical, and legal considerations for increasing levels of autonomy. Sci Robot 2(4):eaam8638

    Google Scholar 

  • Yip M, Das N (2017) Robot autonomy for surgery, CoRR, abs/1707.03080. http://arxiv.org/abs/1707.03080

  • Zhou SK, Rueckert D, Fichtinger G (eds) (2019) Handbook of medical image computing and computer assisted intervention. Academic Press, p 1072

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fanny Ficuciello .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer-Verlag London Ltd., part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ficuciello, F. (2021). Surgical Robotics. In: Baillieul, J., Samad, T. (eds) Encyclopedia of Systems and Control. Springer, London. https://doi.org/10.1007/978-1-4471-5102-9_100031-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5102-9_100031-1

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5102-9

  • Online ISBN: 978-1-4471-5102-9

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics