Skip to main content

Applications of Discrete-Event Systems

  • Reference work entry
  • First Online:

Abstract

This entry provides an overview of the problems addressed by discrete-event systems (DES) theory, with an emphasis on their connection to various application contexts. The primary intentions are to reveal the caliber and the strengths of this theory and to direct the interested reader, through the listed citations, to the corresponding literature. The concluding part of the entry also identifies some remaining challenges and further opportunities for the area.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Bibliography

  • Akesson K, Fabian M, Flordal H, Malik R (2006) SUPREMICA-an integrated environment for verification, synthesis and simulation of discrete event systems. In: Proceedings of the 8th international workshop on discrete event systems, Ann Arbor. IEEE, pp 384–385

    Google Scholar 

  • Alenljung T, Lennartson B, Hosseini MN (2012) Sensor graphs for discrete event modeling applied to formal verification of PLCs. IEEE Trans Control Syst Technol 20:1506–1521

    Google Scholar 

  • Andersson K, Richardsson J, Lennartson B, Fabian M (2010) Coordination of operations by relation extraction for manufacturing cell controllers. IEEE Trans Control Syst Technol 18: 414–429

    Google Scholar 

  • Baccelli F, Cohen G, Olsder GJ, Quadrat JP (1992) Synchronization and linearity: an algebra for discrete event systems. Wiley, New York

    Google Scholar 

  • Balemi S, Hoffmann GJ, Wong-Toi PG, Franklin GJ (1993) Supervisory control of a rapid thermal multiprocessor. IEEE Trans Autom Control 38:1040–1059

    MathSciNet  Google Scholar 

  • Banks J, Carson II JS, Nelson BL, Nicol DM (2009) Discrete-event system simulation, 5th edn. Prentice Hall, Upper Saddle

    Google Scholar 

  • Bertsekas DP (1995) Dynamic programming and optimal control, vols 1, 2. Athena Scientific, Belmont

    Google Scholar 

  • Brandin B (1996) The real-time supervisory control of an experimental manufacturing cell. IEEE Trans Robot Autom 12:1–14

    Google Scholar 

  • Cao X-R (2005) Basic ideas for event-based optimization of Markov systems. Discret Event Syst Theory Appl 15:169–197

    Google Scholar 

  • Cao X-R (2007) Stochastic learning and optimization: a sensitivity approach. Springer, New York

    Google Scholar 

  • Cassandras CG (1994) Perturbation analysis and “rapid learning” in the control of manufacturing systems. In: Leondes CT (ed) Dynamics of discrete event systems, vol 51. Academic, Boston, pp 243–284

    Google Scholar 

  • Cassandras CG, Lafortune S (2008) Introduction to discrete event systems, 2nd edn. Springer, New York

    Google Scholar 

  • Cassandras CG, Strickland SG (1988) Perturbation analytic methodologies for design and optimization of communication networks. IEEE J Sel Areas Commun 6:158–171

    Google Scholar 

  • Cassandras CG, Yao C (2013) Hybrid models for the control and optimization of manufacturing systems. In: Campos J, Seatzu C, Xie X (eds) Formal methods in manufacturing. CRC/Taylor and Francis, Boca Raton

    Google Scholar 

  • Chandra V, Huang Z, Kumar R (2003) Automated control synthesis for an assembly line using discrete event system theory. IEEE Trans Syst Man Cybern Part C 33:284–289

    Google Scholar 

  • Curry JER (2012) Some perspectives and challenges in the (discrete) control of cellular systems. In: Proceedings of the WODES 2012, Guadalajar. IFAC, pp 1–3

    Google Scholar 

  • Dai JG (1995) On positive Harris recurrence of multiclass queueing networks: a unified approach via fluid limit models. Ann Appl Probab 5:49–77

    MathSciNet  Google Scholar 

  • David R, Alla H (1992) Petri nets and Grafcet: tools for modelling discrete event systems. Prentice-Hall, Upper Saddle

    Google Scholar 

  • David R, Alla H (2005) Discrete, continuous and hybrid Petri nets. Springer, Berlin

    Google Scholar 

  • David-Henriet X, Hardouin L, Raisch J, Cottenceau B (2013) Optimal control for timed event graphs under partial synchronization. In: Proceedings of the 52nd IEEE conference on decision and control, Florence. IEEE

    Google Scholar 

  • Dubreil J, Darondeau P, Marchand H (2010) Supervisory control for opacity. IEEE Trans Autom Control 55:1089–1100

    MathSciNet  Google Scholar 

  • Endsley EW, Almeida EE, Tilbury DM (2006) Modular finite state machines: development and application to reconfigurable manufacturing cell controller generation. Control Eng Pract 14:1127–1142

    Google Scholar 

  • Ezpeleta J, Colom JM, Martinez J (1995) A Petri net based deadlock prevention policy for flexible manufacturing systems. IEEE Trans R&A 11:173–184

    Google Scholar 

  • Feng L, Wonham WM (2006) TCT: a computation tool for supervisory control synthesis. In: Proceedings of the 8th international workshop on discrete event systems, Ann Arbor. IEEE, pp 388–389

    Google Scholar 

  • Feng L, Wonham WM, Thiagarajan PS (2007) Designing communicating transaction processes by supervisory control theory. Formal Methods Syst Design 30:117–141

    Google Scholar 

  • Fu M, Xie X (2002) Derivative estimation for buffer capacity of continuous transfer lines subject to operation-dependent failures. Discret Event Syst Theory Appl 12:447–469

    MathSciNet  Google Scholar 

  • Gershwin SB (1994) Manufacturing systems engineering. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Giua A, Fanti MP, Seatzu C (2006) Monitor design for colored Petri nets: an application to deadlock prevention in railway networks. Control Eng Pract 10:1231–1247

    Google Scholar 

  • Hill RC, Cury JER, de Queiroz MH, Tilbury DM, Lafortune S (2010) Multi-level hierarchical interface-based supervisory control. Automatica 46:1152–1164

    Google Scholar 

  • Ho YC, Cao X-R (1991) Perturbation analysis of discrete event systems. Kluwer Academic, Boston

    Google Scholar 

  • Homem-de Mello T, Shapiro A, Spearman ML (1999) Finding optimal material release times using simulation-based optimization. Manage Sci 45:86–102

    Google Scholar 

  • Hopcroft JE, Ullman JD (1979) Introduction to automata theory, languages and computation. Addison-Wesley, Reading

    Google Scholar 

  • Horowitz R, Varaiya P (2000) Control design of automated highway system. Proc IEEE 88: 913–925

    Google Scholar 

  • Jeng M, Xie X, Peng MY (2002) Process nets with resources for manufacturing modeling and their analysis. IEEE Trans Robot Autom 18:875–889

    Google Scholar 

  • Kim J-H, Lee T-E (2012) Feedback control design for cluster tools with wafer residency time constraints. In: IEEE conference on systems, man and cybernetics, Seoul. IEEE, pp 3063–3068

    Google Scholar 

  • Kumar R, Takai S (2010) Decentralized prognosis of failures in discrete event systems. IEEE Trans Autom Control 55:48–59

    MathSciNet  Google Scholar 

  • Lee T-E (2008) A review of cluster tool scheduling and control for semiconductor manufacturing. In: Proceedings of the winter simulation conference, Miami. INFORMS, pp 1–6

    Google Scholar 

  • Lewis RW (1998) Programming industrial control systems using IEC 1131-3. Technical report, The Institution of Electrical Engineers

    Google Scholar 

  • Li M, Kumar R (2012) Model-based automatic test generation for Simulink/Stateflow using extended finite automaton. In: Proceedings of the CASE, Seoul. IEEE

    Google Scholar 

  • Li R, Reveliotis S (2013) Performance optimization for a class of generalized stochastic Petri nets. In: Proceedings of the 52nd IEEE conference on decision and control, Florence. IEEE

    Google Scholar 

  • Li Z, Zhou M, Wu N (2008) A survey and comparison of Petri net-based deadlock prevention policies for flexible manufacturing systems. IEEE Trans Syst Man Cybern Part C 38:173–188

    Google Scholar 

  • Liao H, Wang Y, Cho HK, Stanley J, Kelly T, Lafortune S, Mahlke S, Reveliotis S (2013) Concurrency bugs in multithreaded software: modeling and analysis using Petri nets. Discret Event Syst Theory Appl 23:157–195

    MathSciNet  Google Scholar 

  • Markovski J, Su R (2013) Towards optimal supervisory controller synthesis of stochastic nondeterministic discrete event systems. In: Proceedings of the 52nd IEEE conference on decision and control, Florence. IEEE

    Google Scholar 

  • Meyn S (2008) Control techniques for complex networks. Cambridge University Press, Cambridge

    Google Scholar 

  • Murata T (1989) Petri nets: properties, analysis and applications. Proc IEEE 77:541–580

    Google Scholar 

  • Panayiotou CG, Cassandras CG (1999) Optimization of kanban-based manufacturing systems. Automatica 35:1521–1533

    MathSciNet  Google Scholar 

  • Park E, Tilbury DM, Khargonekar PP (1999) Modular logic controllers for machining systems: formal representations and performance analysis using Petri nets. IEEE Trans Robot Autom 15:1046–1061

    Google Scholar 

  • Pinedo M (2002) Scheduling. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Reveliotis SA (2000) Conflict resolution in AGV systems. IIE Trans 32(7):647–659

    Google Scholar 

  • Reveliotis SA (2005) Real-time management of resource allocation systems: a discrete event systems approach. Springer, New York

    Google Scholar 

  • Reveliotis SA (2007) Algebraic deadlock avoidance policies for sequential resource allocation systems. In: Lahmar M (ed) Facility logistics: approaches and solutions to next generation challenges. Auerbach Publications, Boca Raton, pp 235–289

    Google Scholar 

  • Reveliotis SA, Ferreira PM (1996) Deadlock avoidance policies for automated manufacturing cells. IEEE Trans Robot Autom 12:845–857

    Google Scholar 

  • Reveliotis S, Nazeem A (2013) Deadlock avoidance policies for automated manufacturing systems using finite state automata. In: Campos J, Seatzu C, Xie X (eds) Formal methods in manufacturing. CRC/Taylor and Francis

    Google Scholar 

  • Reveliotis S, Roszkowska E (2011) Conflict resolution in free-ranging multi-vehicle systems: a resource allocation paradigm. IEEE Trans Robot 27:283–296

    Google Scholar 

  • Ricker L, Lafortune S, Gene S (2006) DESUMA: a tool integrating giddes and umdes. In: Proceedings of the 8th international workshop on discrete event systems, Ann Arbor. IEEE, pp 392–393

    Google Scholar 

  • Saboori A, Hadjicostis CN (2012) Opacity-enforcing supervisory strategies via state estimator constructions. IEEE Trans Autom Control 57:1155–1165

    MathSciNet  Google Scholar 

  • Saboori A, Hadjicostis CN (2014) Current-state opacity formulations in probabilistic finite automata. IEEE Trans Autom Control 59:120–133

    MathSciNet  Google Scholar 

  • Sampath M, Sengupta R, Lafortune S, Sinnamohideen K, Teneketzis D (1996) Failure diagnosis using disrcete event models. IEEE Trans Control Syst Technol 4:105–124

    Google Scholar 

  • Sampath R, Darabi H, Buy U, Liu J (2008) Control reconfiguration of discrete event systems with dynamic control specifications. IEEE Trans Autom Sci Eng 5:84–100

    Google Scholar 

  • Santoso T, Ahmed S, Goetschalckx M, Shapiro A (2005) A stochastic programming approach for supply chain network design under uncertainty. Europ J Oper Res 167:96–115

    MathSciNet  Google Scholar 

  • Schmidt K (2012) Computation of supervisors for reconfigurable machine tools. In: Proceedings of the WODES 2012, Guadalajara. IFAC, pp 227–232

    Google Scholar 

  • Sethi SP, Zhang Q (1994) Hierarchical decision making in stochastic manufacturing systems. Birkhäuser, Boston

    Google Scholar 

  • Srikant R (2004) The mathematics of internet congestion control. Birkhäuser, Boston

    Google Scholar 

  • Van der Aalst W (1997) Verification of workflow nets. In: Azema P, Balbo G (eds) Lecture notes in computer science, vol 1248. Springer, New York, pp 407–426

    Google Scholar 

  • Wardi Y, Cassandras CG (2013) Approximate IPA: trading unbiasedness for simplicity. In: Proceedings of the 52nd IEEE conference on decision and control, Florence. IEEE

    Google Scholar 

  • Wassyng A, Lawford M, Maibaum T (2011) Software certification experience in the Canadian muclear industry: lessons for the future. In: EMSOFT’11, Taipei

    Google Scholar 

  • Wightkin N, Guy U, Darabi H (2011) Formal modeling of sequential function charts with time Petri nets. IEEE Trans Control Syst Technol 19:455–464

    Google Scholar 

  • Wonham WM (2006) Supervisory control of discrete event systems. Technical report ECE 1636F/1637S 2006-07, Electrical & Computer Eng., University of Toronto

    Google Scholar 

  • Zhou M, Fanti MP (eds) (2004) Deadlock resolution in computer-integrated systems. Marcel Dekker, Singapore

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this entry

Cite this entry

Reveliotis, S. (2015). Applications of Discrete-Event Systems. In: Baillieul, J., Samad, T. (eds) Encyclopedia of Systems and Control. Springer, London. https://doi.org/10.1007/978-1-4471-5058-9_59

Download citation

Publish with us

Policies and ethics