Encyclopedia of Systems and Control

2015 Edition
| Editors: John Baillieul, Tariq Samad

Mean Field Games

  • Peter E. Caines
Reference work entry
DOI: https://doi.org/10.1007/978-1-4471-5058-9_30


Mean Field Game (MFG) theory studies the existence of Nash equilibria, together with the individual strategies which generate them, in games involving a large number of agents modeled by controlled stochastic dynamical systems. This is achieved by exploiting the relationship between the finite and corresponding infinite limit population problems. The solution of the infinite population problem is given by the fundamental MFG Hamilton-Jacobi-Bellman (HJB) and Fokker-Planck-Kolmogorov (FPK) equations which are linked by the state distribution of a generic agent, otherwise known as the system’s mean field.


Fokker-Planck-Kolmogorov (FPK) equation Hamilton-Jacobi-Bellman (HJB) equation Nash equilibrium Stochastic dynamical systems 
This is a preview of subscription content, log in to check access.


  1. Altman E, Basar T, Srikant R (2002) Nash equilibria for combined flow control and routing in networks: asymptotic behavior for a large number of users. IEEE Trans Autom Control 47(6):917–930. Special issue on Control Issues in Telecommunication NetworksGoogle Scholar
  2. Aumann RJ, Shapley LS (1974) Values of non-atomic games. Princeton University Press, PrincetonGoogle Scholar
  3. Basar T, Ho YC (1974) Informational properties of the Nash solutions of two stochastic nonzero-sum games. J Econ Theory 7:370–387MathSciNetGoogle Scholar
  4. Basar T, Olsder GJ (1999) Dynamic noncooperative game theory. SIAM, PhiladelphiaGoogle Scholar
  5. Bensoussan A, Frehse J (1984) Nonlinear elliptic systems in stochastic game theory. J Reine Angew Math 350:23–67MathSciNetGoogle Scholar
  6. Bergin J, Bernhardt D (1992) Anonymous sequential games with aggregate uncertainty. J Math Econ 21:543–562. North-HollandGoogle Scholar
  7. Cardaliaguet P (2012) Notes on mean field games. Collège de FranceGoogle Scholar
  8. Cardaliaguet P (2013) Long term average of first order mean field games and work KAM theory. Dyn Games Appl 3:473–488MathSciNetGoogle Scholar
  9. Correa JR, Stier-Moses NE (2010) In: Cochran JJ (ed) Wardrop equilibria. Wiley encyclopedia of operations research and management science. Jhon Wiley & Sons, Chichester, UKGoogle Scholar
  10. Haurie A, Marcotte P (1985) On the relationship between Nash-Cournot and Wardrop equilibria. Networks 15(3):295–308MathSciNetGoogle Scholar
  11. Ho YC (1980) Team decision theory and information structures. Proc IEEE 68(6):15–22Google Scholar
  12. Huang MY (2010) Large-population LQG games involving a major player: the Nash certainty equivalence principle. SIAM J Control Optim 48(5):3318–3353Google Scholar
  13. Huang MY, Caines PE, Malhamé RP (2003) Individual and mass behaviour in large population stochastic wireless power control problems: centralized and Nash equilibrium solutions. In: IEEE conference on decision and control, Maui, pp 98–103Google Scholar
  14. Huang MY, Malhamé RP, Caines PE (2006) Large population stochastic dynamic games: closed loop Kean-Vlasov systems and the Nash certainty equivalence principle. Commun Inf Syst 6(3):221–252MathSciNetGoogle Scholar
  15. Huang MY, Caines PE, Malhamé RP (2007) Large population cost-coupled LQG problems with non-uniform agents: individual-mass behaviour and decentralized \(\varepsilon\) – Nash equilibria. IEEE Tans Autom Control 52(9):1560–1571Google Scholar
  16. Jovanovic B, Rosenthal RW (1988) Anonymous sequential games. J Math Econ 17(1):77–87. ElsevierMathSciNetGoogle Scholar
  17. Kizilkale AC, Caines PE (2013) Mean field stochastic adaptive control. IEEE Trans Autom Control 58(4):905–920MathSciNetGoogle Scholar
  18. Lasry JM, Lions PL (2006a) Jeux à champ moyen. I – Le cas stationnaire. Comptes Rendus Math 343(9):619–625MathSciNetGoogle Scholar
  19. Lasry JM, Lions PL (2006b) Jeux à champ moyen. II – Horizon fini et controle optimal. Comptes Rendus Math 343(10):679–684MathSciNetGoogle Scholar
  20. Lasry JM Lions PL (2007) Mean field games. Jpn J Math 2:229–260MathSciNetGoogle Scholar
  21. Li T, Zhang JF (2008) Asymptotically optimal decentralized control for large population stochastic multiagent systems. IEEE Tans Autom Control 53(7):1643–1660Google Scholar
  22. Neyman A (2002) Values of games with infinitely many players. In: Aumann RJ, Hart S (eds) Handbook of game theory, vol 3. North Holland, Amsterdam, pp 2121–2167Google Scholar
  23. Nourian M, Caines PE (2013) \(\varepsilon\)-Nash Mean field games theory for nonlinear stochastic dynamical systems with major and minor agents. SIAM J Control Optim 50(5):2907–2937MathSciNetGoogle Scholar
  24. Nguyen SL, Huang M (2012) Linear-quadratic-Gaussian mixed games with continuum-parametrized minor players. SIAM J Control Optim 50(5):2907–2937MathSciNetGoogle Scholar
  25. Tembine H, Zhu Q, Basar T (2012) Risk-sensitive mean field games. arXiv:1210.2806Google Scholar
  26. Wardrop JG (1952) Some theoretical aspects of road traffic research. In: Proceedings of the institute of civil engineers, London, part II, vol 1, pp 325–378Google Scholar
  27. Weintraub GY, Benkard C, Van Roy B (2005) Oblivious equilibrium: a mean field approximation for large-scale dynamic games. In: Advances in neural information processing systems. MIT, CambridgeGoogle Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  • Peter E. Caines
    • 1
  1. 1.McGill UniversityMontrealCanada