Encyclopedia of Systems and Control

2015 Edition
| Editors: John Baillieul, Tariq Samad

Validation and Verification Techniques and Tools

  • Christine M. Belcastro
Reference work entry
DOI: https://doi.org/10.1007/978-1-4471-5058-9_146

Abstract

Validation and verification (V&V) of advanced control systems is required for their use in fielded systems. A comprehensive V&V process involving analysis, simulation, and experimental testing should be used to assess closed-loop system performance and identify system limitations. This entry discusses current V&V methods and tools as well as future research directions for safety-critical control applications.

Keywords

Closed-loop system stability and performance Software Verification Stability and performance robustness Uncertainties and uncertainty models Validation of Safety-Critical Systems 
This is a preview of subscription content, log in to check access.

Bibliography

  1. Apkarian P, Gahinet P (1995) A convex characterization of gain-scheduled Hinf controllers. IEEE Trans Autom Control AC-40(5):853–864MathSciNetCrossRefGoogle Scholar
  2. Balas G, Chiang R, Packard A, Safonov M, Robust control toolboxTM, Matlab®; product family. The Mathworks Inc., Natick, MA, 1994–2014Google Scholar
  3. Balas G, Packard A, Seiler P, Topcu U (2013a) Robustness analysis of nonlinear systems. University of Minnesota. Website http://www.aem.umn.edu/~AerospaceControl/
  4. Balas GJ, Chaing R, Packard AK, Safonov M (2013b) Robust control toolbox. The Mathworks Inc., Natick, MAGoogle Scholar
  5. Belcastro CM, Khong TH, Shin J-Y, Balas GJ, Kwatny HG, Chang B-C (2005) Uncertainty modeling for robustness analysis of control upset prevention and recovery systems. In: AIAA guidance, navigation, and control conference and exhibit, AIAA-2005-6427, San FranciscoCrossRefGoogle Scholar
  6. Belcastro CM (2010) Validation and verification of future integrated safety-critical systems operating under off-nominal conditions. In: AIAA guidance, navigation and control conference, Toronto, Aug 2010CrossRefGoogle Scholar
  7. Belcastro CM (2012) Validation of safety-critical systems for aircraft loss-of-control prevention and recovery. In: AIAA guidance, navigation, and control conference, Minneapolis, Aug 2012CrossRefGoogle Scholar
  8. Berard B, Bidoit M, Finkel A, Laroussinie F, Petit A, Petrucci L, Schnoebelen P (1998) Systems and software verification: model-checking techniques and tools. Springer, BerlinGoogle Scholar
  9. Chakraborty A, Seiler P, Balas GJ (2011a) Susceptibility of F/A-18 flight controllers to the falling-leaf mode: linear analysis. J Guid Control Dyn 34(1):57–72CrossRefGoogle Scholar
  10. Chakraborty A, Seiler P, Balas GJ (2011b) Susceptibility of F/A-18 flight controllers to the falling-leaf mode: nonlinear analysis. J Guid Control Dyn 34(1):73–85CrossRefGoogle Scholar
  11. Chen C-T (1998) Linear system theory and design, 3rd edn. Oxford University Press, New YorkGoogle Scholar
  12. Control System ToolboxTM, Matlab®; product family. The Mathworks Inc., Natick, MAGoogle Scholar
  13. Cooper GE, Harper RP Jr (1969) The use of pilot rating in the evaluation of aircraft handling qualities. AGARD report 567, Apr 1969Google Scholar
  14. Doyle JC, Francis BA, Tannenbaum AR (1992) Feedback control theory, Macmillan, New YorkGoogle Scholar
  15. Driscol K, Madl G, Hall B (2012) Modeling and analysis of mixed synchronous/asynchronous systems. NASA/CR-2012-217756, Sept 2012Google Scholar
  16. Fielding C, Varga A, Bennani S, Selier M (eds) (2002) Advanced techniques for clearance of flight control laws. Springer, BerlinGoogle Scholar
  17. Foster JV, Cunningham K, Fremaux CM, Shah GH, Stewart EC, Rivers RA, Wilborn JE, Gato W (2005) Dynamics modeling and simulation of large transport airplanes in upset conditions. In: AIAA guidance, navigation, and control conference, San FranciscoCrossRefGoogle Scholar
  18. Gill SJ, Lowenberg MH, Krauskopf B, Puyou G, Coetzee E (2012) Bifurcation analysis of the NASA GTM with a view to upset recovery. In: AIAA guidance, navigation, and control conference, Minneapolis, Aug 2012CrossRefGoogle Scholar
  19. Groen E, Ledegang W, Field J, Smaili H, Roza M, Fucke L, Nooij S, Goman M, Mayrhofer M, Zaichik L, Grigoryev M, Biryukov V (2012) SUPRA – enhanced upset recovery simulation. In: AIAA guidance, navigation, and control conference, Minneapolis, Aug 2012CrossRefGoogle Scholar
  20. Hartmann AK (2009) Practical guide to computer simulations. World Scientific, Hackensack, New JerseyCrossRefGoogle Scholar
  21. Hecker S, Varga A, Magni J (2005) Enhanced LFR toolbox for Matlab. Aerosp Sci Technol 9(2):173–180CrossRefGoogle Scholar
  22. Holloway CM (2012) Towards understanding the DO-178C/ED-12C assurance case. In: Proceedings of the IET 7th international conference on system safety, Edinburgh, Oct 2012CrossRefGoogle Scholar
  23. Hovakimyan N, Cao C (2010) L1 adaptive control theory. Society for Industrial and Applied Mathematics, PhiladelphiaGoogle Scholar
  24. IEEE (2011) IEEE guide–adoption of the Project Management Institute (PMI®;) standard a guide to the Project Management Body of Knowledge (PMBOK®; Guide), 4th edn. IEEE, p 452. doi:10.1109/IEEESTD.2011.6086685. Retrieved 7 Dec 2012Google Scholar
  25. Kenny SP, Crespo LG, Giesy DP (2012) UQ tools: the uncertainty quantification toolbox – introduction and tutorial. NASA TM-2012-217561, Apr 2012Google Scholar
  26. Khalil HK (2002) Nonlinear systems, 3rd edn. Prentice Hall, Upper Saddle River, New JerseyGoogle Scholar
  27. Kwatny HG, Dongmo J-ET, Chang B-C, Bajpai G, Yasar M, Belcastro C (2013) Nonlinear analysis of aircraft loss of control. J Guid Control Dyn 36(1):149–162CrossRefGoogle Scholar
  28. Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo methods. Wiley series in probability and statistics. Wiley, New YorkCrossRefGoogle Scholar
  29. Latorella KA, Feary M (2011) NASA aviation safety programs: human factors focused work. In: 16th International symposium on aviation psychology, Dayton, 2–5 May 2011Google Scholar
  30. Lavretsky E, Wise KA (2013) Robust and adaptive control. Springer, LondonCrossRefGoogle Scholar
  31. Liu Y, Claus RW, Litt JS, Guo T-H (2013) Simulating Effects of High Angle of Attack on Turbofan Engine Performance. In: 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Grapevine, Texas, 7–10 January 2013Google Scholar
  32. Magni J-F (2004) Linear fractional representation toolbox – modeling, order reduction, and gain scheduling. ONERA technical report TR 6/08162 DSCD, Systems Control and Flight Dynamics Department, ONERA, July 2004Google Scholar
  33. Magni J-F (2006) User manual of the linear fractional representation toolbox (version 2.0). Technical report 5/10403.01F, ONERA/DCSD. http://www.onera.fr/staff-en/jean-marc-biannic/docs/lfrtv20s.zip
  34. Matlab®;, The Mathworks Inc., Natick, MAGoogle Scholar
  35. Ogata K (1970) Modern control engineering. Prentice-Hall, Englewood CliffsGoogle Scholar
  36. Owre S, Shankar N, Rushby J (1992) PVS: a prototype verification system. In: CADE 11, Saratoga Springs, June 1992Google Scholar
  37. Packard AK (1994) Gain-scheduling via linear fractional transformations. Syst Control Lett 22:79–92MathSciNetCrossRefGoogle Scholar
  38. Packard A, Topcu U, Seiler P, Balas G (2010) Help on SOS. IEEE Control Syst Mag 30(4):18–23MathSciNetCrossRefGoogle Scholar
  39. Person SJ, Yang G, Rungta N, Khurshid S (2011) Directed incremental symbolic execution. In: 32nd ACM SIGPLAN conference on programming design and implementation, San Jose, June 4–8 2011Google Scholar
  40. Reif K, Gunther S, Yaz E, Unbehauen R (1999) Stochastic stability of the discrete-time extended Kalman filter. IEEE Trans Autom Control 44(4):714, 728MathSciNetCrossRefGoogle Scholar
  41. Rhudy M, Gu Y, Napolitano MR (2013a) An analytical approach for comparing linearization methods in EKF and UKF. Int Journal of Adv Robot Syst, 2013, Vol. 10, 208. doi:10.5772/56370Google Scholar
  42. Rhudy M, Gu Y, Napolitano MR (2013b) Does the unscented Kalman filter converge faster than the extended Kalman filter? A counter example. AIAA guidance navigation and control conference, Boston, Aug 2013Google Scholar
  43. Rhudy M, Gu Y, Gross J, Gururajan S, Napolitano MR (2013c) Sensitivity analysis of extended and unscented Kalman filters for attitude estimation. AIAA J Aerosp Inf Syst 10(3):131–143Google Scholar
  44. Rugh J, Shamma J (2000) A survey of research on gain scheduling. Automatica 36:1401–1425MathSciNetCrossRefGoogle Scholar
  45. Rushby J (1995) Formal methods and their role in digital systems validation for airborne systems. NASA Contractor report 4673, Aug 1995Google Scholar
  46. Rushby J (2009) Software verification and system assurance. In: 7th IEEE international conference on software engineering and formal methods (SEFM), Hanoi, Nov 2009CrossRefGoogle Scholar
  47. Simulink®;, The Mathworks Inc., Natick, MAGoogle Scholar
  48. Slotine J-JE, Li W (1991) Applied nonlinear control. Pearson education. Prentice Hall, Upper Saddle River, New JerseyGoogle Scholar
  49. Summers E, Chakraborty A, Tan W, Topcu U, Seiler P, Balas GJ, Packard AK (2013) Quantitative local L2-gain and reachability analysis for nonlinear systems. Int J Robust Nonlinear Control, 23:1115–1135MathSciNetCrossRefGoogle Scholar
  50. Tallant GS, Hull RA, Bose P, Johnson T, Buffington JM, Krogh B, Crum VW, Prasanth R (2004) Validation & verification of intelligent and adaptive control systems. IEEEAC paper #1487, Dec 2004Google Scholar
  51. Varga A, Looye G, Moormann D, Grubel G (1998) Automated generation of LFT-based parametric uncertainty descriptions from generic aircraft models. Math Comput Model Dyn Syst 4:249–274CrossRefGoogle Scholar
  52. Varga A, Hansson A, Puyou G (2012) Optimization based clearance of flight control laws. Springer, BerlinCrossRefGoogle Scholar
  53. Wu F, Packard AK, Becker G (1996) Induced L2-norm control for LPV systems with bounded parameter variation rates. Int J Control 6(9/10):983–998MathSciNetGoogle Scholar
  54. Xu X, Ulrey M, Brown JA, Mast J, Lapis MB (2013) Safety sufficiency for NextGen: assessment of selected existing safety methods, tools, processes, and regulations. NASA/CR-2013-217801, Feb 2013Google Scholar
  55. Zhou K, Doyle JC (1997) Essentials of robust control. Prentice Hall, Englewood Cliffs, New JerseyGoogle Scholar
  56. Zhou K, Doyle JC, Glover K (1996) Robust and optimal control. Prentice Hall, Englewood Cliffs, New JerseyGoogle Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  • Christine M. Belcastro
    • 1
  1. 1.NASA Langley Research CenterHamptonUSA