Encyclopedia of Systems and Control

2015 Edition
| Editors: John Baillieul, Tariq Samad

Motion Planning for PDEs

  • Thomas Meurer
Reference work entry
DOI: https://doi.org/10.1007/978-1-4471-5058-9_14

Abstract

Motion planning refers to the design of an open-loop or feedforward control to realize prescribed desired paths for the system states or outputs. For distributed-parameter systems described by partial differential equations (PDEs), this requires to take into account the spatial-temporal system dynamics. Here, flatness-based techniques provide a systematic inversion-based motion planning approach, which is based on the parametrization of any system variable by means of a flat or basic output. With this, the motion planning problem can be solved rather intuitively as is illustrated for linear and semilinear PDEs.

Keywords

Basic output Flatness Formal integration Formal power series Trajectory assignment Trajectory planning Transition path 
This is a preview of subscription content, log in to check access.

Bibliography

  1. Dunbar W, Petit N, Rouchon P, Martin P (2003) Motion planning for a nonlinear Stefan problem. ESAIM Control Optim Calculus Var 9:275–296MathSciNetGoogle Scholar
  2. Fliess M, Lévine J, Martin P, Rouchon P (1995) Flatness and defect of non–linear systems: introductory theory and examples. Int J Control 61:1327–1361Google Scholar
  3. Fliess M, Mounier H, Rouchon P, Rudolph J (1997) Systèmes linéaires sur les opérateurs de Mikusiński et commande d’une poutre flexible. ESAIM Proc 2:183–193MathSciNetGoogle Scholar
  4. Laroche B, Martin P, Rouchon P (2000) Motion planning for the heat equation. Int J Robust Nonlinear Control 10:629–643MathSciNetGoogle Scholar
  5. Lynch A, Rudolph J (2002) Flatness-based boundary control of a class of quasilinear parabolic distributed parameter systems. Int J Control 75(15):1219–1230MathSciNetGoogle Scholar
  6. Meurer T (2011) Flatness-based trajectory planning for diffusion-reaction systems in a parallelepipedon – a spectral approach. Automatica 47(5):935–949MathSciNetGoogle Scholar
  7. Meurer T (2013) Control of higher-dimensional PDEs: flatness and backstepping designs. Communications and control engineering series. Springer, BerlinGoogle Scholar
  8. Meurer T, Krstic M (2011) Finite-time multi-agent deployment: a nonlinear PDE motion planning approach. Automatica 47(11):2534–2542MathSciNetGoogle Scholar
  9. Meurer T, Kugi A (2009) Trajectory planning for boundary controlled parabolic PDEs with varying parameters on higher-dimensional spatial domains. IEEE Trans Autom Control 54(8): 1854–1868MathSciNetGoogle Scholar
  10. Meurer T, Zeitz M (2005) Feedforward and feedback tracking control of nonlinear diffusion-convection-reaction systems using summability methods. Ind Eng Chem Res 44:2532–2548Google Scholar
  11. Petit N, Rouchon P (2001) Flatness of heavy chain systems. SIAM J Control Optim 40(2):475–495MathSciNetGoogle Scholar
  12. Petit N, Rouchon P (2002) Dynamics and solutions to some control problems for water-tank systems. IEEE Trans Autom Control 47(4):594–609MathSciNetGoogle Scholar
  13. Rodino L (1993) Linear partial differential operators in gevrey spaces. World Scientific, SingaporeGoogle Scholar
  14. Rouchon P (2001) Motion planning, equivalence, and infinite dimensional systems. Int J Appl Math Comput Sci 11:165–188MathSciNetGoogle Scholar
  15. Rudolph J (2003) Flatness based control of distributed parameter systems. Berichte aus der Steuerungs– und Regelungstechnik. Shaker–Verlag, AachenGoogle Scholar
  16. Rudolph J, Woittennek F (2008) Motion planning and open loop control design for linear distributed parameter systems with lumped controls. Int J Control 81(3):457–474MathSciNetGoogle Scholar
  17. Schörkhuber B, Meurer T, Jüngel A (2013) Flatness of semilinear parabolic PDEs – a generalized Cauchy-Kowalevski approach. IEEE Trans Autom Control 58(9):2277–2291Google Scholar
  18. Schröck J, Meurer T, Kugi A (2013) Motion planning for Piezo–actuated flexible structures: modeling, design, and experiment. IEEE Trans Control Syst Technol 21(3):807–819Google Scholar
  19. Woittennek F, Mounier H (2010) Controllability of networks of spatially one-dimensional second order P.D.E. – an algebraic approach. SIAM J Control Optim 48(6):3882–3902MathSciNetGoogle Scholar
  20. Woittennek F, Rudolph J (2003) Motion planning for a class of boundary controlled linear hyperbolic PDE’s involving finite distributed delays. ESAIM Control Optim Calculus Var 9: 419–435MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  • Thomas Meurer
    • 1
  1. 1.Faculty of EngineeringChristian-Albrechts-University KielKielGermany