Encyclopedia of Systems and Control

2015 Edition
| Editors: John Baillieul, Tariq Samad

Bilinear Control of Schrödinger PDEs

  • Karine BeauchardEmail author
  • Pierre Rouchon
Reference work entry
DOI: https://doi.org/10.1007/978-1-4471-5058-9_12

Abstract

This entry is an introduction to modern issues about controllability of Schrödinger PDEs with bilinear controls. This model is pertinent for a quantum particle, controlled by an electric field. We review recent developments in the field, with discrimination between exact and approximate controllabilities, in finite or infinite time. We also underline the variety of mathematical tools used by various teams in the last decade. The results are illustrated on several classical examples.

Keywords

Approximate controllability Global exact controllability Local exact controllability Quantum particles Schrödinger equation Small-time controllability 
This is a preview of subscription content, log in to check access.

Notes

Acknowledgements

The authors were partially supported by the “Agence Nationale de la Recherche” (ANR), Projet Blanc EMAQS number ANR-2011-BS01-017-01.

Bibliography

  1. Altafini C (2003) Controllability properties for finite dimensional quantum Markovian master equations. J Math Phys 44(6):2357–2372MathSciNetGoogle Scholar
  2. Ball JM, Marsden JE, Slemrod M (1982) Controllability for distributed bilinear systems. SIAM J Control Optim 20:575–597MathSciNetGoogle Scholar
  3. Baudouin L, Salomon J (2008) Constructive solutions of a bilinear control problem for a Schrödinger equation. Syst Control Lett 57(6):453–464MathSciNetGoogle Scholar
  4. Beauchard K (2005) Local controllability of a 1-D Schrödinger equation. J Math Pures Appl 84:851–956MathSciNetGoogle Scholar
  5. Beauchard K (2011) Local controllability and non controllability for a ID wave equation with bilinear control. J Diff Equ 250:2064–2098MathSciNetGoogle Scholar
  6. Beauchard K, Laurent C (2010) Local controllability of 1D linear and nonlinear Schrödinger equations with bilinear control. J Math Pures Appl 94(5):520–554MathSciNetGoogle Scholar
  7. Beauchard K, Mirrahimi M (2009) Practical stabilization of a quantum particle in a one-dimensional infinite square potential well. SIAM J Control Optim 48(2):1179–1205MathSciNetGoogle Scholar
  8. Beauchard K, Morancey M (2014) Local controllability of 1D Schrdinger equations with bilinear control and minimal time, vol 4. Mathematical Control and Related FieldsGoogle Scholar
  9. Beauchard K, Nersesyan V (2010) Semi-global weak stabilization of bilinear Schrödinger equations. CRAS 348(19–20):1073–1078MathSciNetGoogle Scholar
  10. Beauchard K, Coron J-M, Rouchon P (2010) Controllability issues for continuous spectrum systems and ensemble controllability of Bloch equations. Commun Math Phys 290(2):525–557MathSciNetGoogle Scholar
  11. Beauchard K, Lange H, Teismann H (2013, preprint) Local exact controllability of a Bose-Einstein condensate in a 1D time-varying box. arXiv:1303.2713Google Scholar
  12. Boscain U, Caponigro M, Chambrion T, Sigalotti M (2012) A weak spectral condition for the controllability of the bilinear Schrödinger equation with application to the control of a rotating planar molecule. Commun Math Phys 311(2):423–455MathSciNetGoogle Scholar
  13. Boscain U, Chambrion T, Sigalotti M (2013) On some open questions in bilinear quantum control. arXiv:1304.7181Google Scholar
  14. Brézis H (1999) Analyse fonctionnelles: théorie et applications. Dunod, ParisGoogle Scholar
  15. Cancès E, Le Bris C, Pilot M (2000) Contrôle optimal bilinéaire d’une équation de Schrödinger. CRAS Paris 330:567–571Google Scholar
  16. Chambrion T, Mason P, Sigalotti M, Boscain M (2009) Controllability of the discrete-spectrum Schrödinger equation driven by an external field. Ann Inst Henri Poincaré Anal Nonlinéaire 26(l):329–349MathSciNetGoogle Scholar
  17. Coron J-M (2006) On the small-time local controllability of a quantum particule in a moving one-dimensional infinite square potential well. C R Acad Sci Paris I 342:103–108MathSciNetGoogle Scholar
  18. Coron J-M (2007) Control and nonlinearity. Mathematical surveys and monographs, vol 136. American Mathematical Society, ProvidenceGoogle Scholar
  19. D’Alessandro D (2008) Introduction to quantum control and dynamics. Applied mathematics and nonlinear science. Chapman & Hall/CRC, Boca RatonGoogle Scholar
  20. Ervedoza S, Puel J-P (2009) Approximate controllability for a system of Schrödinger equations modeling a single trapped ion. Ann Inst Henri Poincaré Anal Nonlinéaire 26(6):2111–2136MathSciNetGoogle Scholar
  21. Fu H, Schirmer SG, Solomon AI (2001) Complete controllability of finite level quantum systems. J Phys A 34(8):1678–1690MathSciNetGoogle Scholar
  22. Kurniawan I, Dirr G, Helmke U (2012) Controllability aspects of quantum dynamics: unified approach for closed and open systems. IEEE Trans Autom Control 57(8):1984–1996MathSciNetGoogle Scholar
  23. Li JS, Khaneja N (2009) Ensemble control of Bloch equations. IEEE Trans Autom Control 54(3):528–536MathSciNetGoogle Scholar
  24. Liao S-K, Ho T-S, Chu S-I, Rabitz HH (2011) Fast-kick-off monotonically convergent algorithm for searching optimal control fields. Phys Rev A 84(3):031401Google Scholar
  25. Loreti P, Komornik V (2005) Fourier series in control theory. Springer, New YorkGoogle Scholar
  26. Mirrahimi M (2009) Lyapunov control of a quantum particle in a decaying potential. Ann Inst Henri Poincaré (c) Nonlinear Anal 26:1743–1765MathSciNetGoogle Scholar
  27. Mirrahimi M, Rouchon P (2004) Controllability of quantum harmonic oscillators. IEEE Trans Autom Control 49(5):745–747MathSciNetGoogle Scholar
  28. Nersesvan V (2010) Global approximate controllability for Schrödinger equation in higher Sobolev norms and applications. Ann IHP Nonlinear Anal 27(3):901–915Google Scholar
  29. Nersesyan V, Nersisyan H (2012a) Global exact controllability in infinite time of Schrödinger equation. J Math Pures Appl 97(4):295–317MathSciNetGoogle Scholar
  30. Nersesyan V, Nersisyan H (2012b) Global exact controllability in infinite time of Schrödinger equation: multidimensional case. Preprint: arXiv:1201.3445Google Scholar
  31. Nielsen NC, Kehlet C, Glaser SJ and Khaneja N (2010) Optimal Control Methods in NMR Spectroscopy. eMagResGoogle Scholar
  32. Turinici G (2000) On the controllability of bilinear quantum systems. In: Le Bris C, Defranceschi M (eds) Mathematical models and methods for ab initio quantum chemistry. Lecture notes in chemistry, vol 74. SpringerGoogle Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  1. 1.CNRS, CMLSEcole PolytechniquePalaiseauFrance
  2. 2.Centre Automatique et SystmesMines ParisTechParis Cedex 06France