Encyclopedia of Systems and Control

2015 Edition
| Editors: John Baillieul, Tariq Samad

Boundary Control of 1-D Hyperbolic Systems

  • Georges BastinEmail author
  • Jean-Michel Coron
Reference work entry
DOI: https://doi.org/10.1007/978-1-4471-5058-9_11


One-dimensional hyperbolic systems are commonly used to describe the evolution of various physical systems. For many of these systems, controls are available on the boundary. There are then two natural questions: controllability (steer the system from a given state to a desired target) and stabilization (construct feedback laws leading to a good behavior of the closed loop system around a given set point).


Chromatography Controllability Electrical lines Hyperbolic systems Open channels Road traffic Stabilization 
This is a preview of subscription content, log in to check access.


  1. Ancona F, Marson A (1998) On the attainable set for scalar nonlinear conservation laws with boundary control. SIAM J Control Optim 36(1):290–312 (electronic)MathSciNetGoogle Scholar
  2. Aw A, Rascle M (2000) Resurrection of “second order” models of traffic flow. SIAM J Appl Math 60(3):916–938 (electronic)MathSciNetGoogle Scholar
  3. Barré de Saint-Venant A-C (1871) Théorie du mouvement non permanent des eaux, avec application aux crues des rivières et à l’introduction des marées dans leur lit. Comptes rendus de l’Académie des Sciences de Paris, Série 1, Mathématiques, 53:147–154Google Scholar
  4. Bressan A (2000) Hyperbolic systems of conservation laws. Volume 20 of Oxford lecture series in mathematics and its applications. Oxford University Press, Oxford. The one-dimensional Cauchy problemGoogle Scholar
  5. Bressan A, Coclite GM (2002) On the boundary control of systems of conservation laws. SIAM J Control Optim 41(2):607–622 (electronic)MathSciNetGoogle Scholar
  6. Coron J-M, Bastin G, d’Andréa Novel B (2008) Dissipative boundary conditions for one-dimensional nonlinear hyperbolic systems. SIAM J Control Optim 47(3):1460–1498MathSciNetGoogle Scholar
  7. Coron J-M, Vazquez R, Krstic M, Bastin G (2013) Local exponential H2 stabilization of a 2 × 2 quasilinear hyperbolic system using backstepping. SIAM J Control Optim 51(3):2005–2035MathSciNetGoogle Scholar
  8. Glass O (2007) On the controllability of the 1-D isentropic Euler equation. J Eur Math Soc (JEMS) 9(3):427–486MathSciNetGoogle Scholar
  9. Heaviside O (1885, 1886 and 1887) Electromagnetic induction and its propagation. The Electrician, reprinted in Electrical Papers, 2 vols, London. Macmillan and co. 1892Google Scholar
  10. Horsin T (1998) On the controllability of the Burgers equation. ESAIM Control Optim Calc Var 3:83–95 (electronic)MathSciNetGoogle Scholar
  11. Krstic M, Smyshlyaev A (2008) Boundary control of PDEs. Volume 16 of advances in design and control. Society for Industrial and Applied Mathematics (SIAM), Philadelphia. A course on backstepping designsGoogle Scholar
  12. Langmuir I (1916) The constitution and fundamental properties of solids and liquids. Part I. Solids. J Am Chem Soc 38:2221–2295Google Scholar
  13. Li T (1994) Global classical solutions for quasilinear hyperbolic systems. Volume 32 of RAM: research in applied mathematics. Masson, ParisGoogle Scholar
  14. Li T (2010) Controllability and observability for quasilinear hyperbolic systems. Volume 3 of AIMS series on applied mathematics. American Institute of Mathematical Sciences (AIMS), SpringfieldGoogle Scholar
  15. Li T, Rao B-P (2003) Exact boundary controllability for quasi-linear hyperbolic systems. SIAM J Control Optim 41(6):1748–1755 (electronic)Google Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  1. 1.Department of Mathematical EngineeringUniversity Catholique de LouvainLouvain-La-NeuveBelgium
  2. 2.Laboratoire Jacques-Louis LionsUniversity Pierre et Marie CurieParisFrance