Skip to main content

Emerging Role of Stress Perfusion Cardiovascular Magnetic Resonance in the Patient with Congenital Heart Disease

  • Living reference work entry
  • First Online:
Pediatric and Congenital Cardiology, Cardiac Surgery and Intensive Care

Abstract

Rapid advances in surgical repair of congenital heart disease has led to ever increasing numbers surviving into adult life. A proportion of adult congenital heart disease (ACHD) patients will have had direct surgical intervention upon the coronary arteries which renders them vulnerable to issues in later life. There is no accepted method for either the surveillance of these patients nor for their investigation when presenting with new symptoms. This chapter argues for a shift in paradigm away from testing associated with radiation (nuclear techniques, computed tomography, coronary angiography) to a paradigm where stress perfusion cardiac magnetic resonance (CMR) imaging is used as a gatekeeper to determine who needs go on for formal catheterization. The technique of stress perfusion CMR is discussed along with its benefits and weaknesses. Practical illustrations of the technique’s utility are provided throughout the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Arai AE (2000) Magnetic resonance first-pass myocardial perfusion imaging. Top Magn Reson Imaging 11(6):383–398

    Article  CAS  PubMed  Google Scholar 

  2. Arnold R, Ley S, Ley-Zaporozhan J, Eichhorn J, Schenk JP, Ulmer H, Kauczor HU (2007) Visualization of coronary arteries in patients after childhood Kawasaki syndrome: value of multidetector CT and MR imaging in comparison to conventional coronary catheterization. Pediatr Radiol 37(10):998–1006

    Article  PubMed  Google Scholar 

  3. Bangalore S, Parkar S, Messerli FH (2007) “One” cup of coffee and nuclear SPECT to go. J Am Coll Cardiol 49(4):528; author reply 528–529

    Article  PubMed  Google Scholar 

  4. Buechel ER, Balmer C, Bauersfeld U, Kellenberger CJ, Schwitter J (2009) Feasibility of perfusion cardiovascular magnetic resonance in paediatric patients. J Cardiovasc Magn Reson 11:51. doi:10.1186/1532-429X-11-51

    Article  PubMed  PubMed Central  Google Scholar 

  5. Carpeggiani C, Kraft G, Caramella D, Semelka R, Picano E (2012) Radioprotection (un)awareness in cardiologists, and how to improve it. Int J Cardiovasc Imaging 28(6):1369–1374

    Article  CAS  PubMed  Google Scholar 

  6. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, Pennell DJ, Rumberger JA, Ryan T, Verani MS, American Heart Association Writing Group on Myocardial Segmentation and Registration for Cardiac Imaging (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Int J Cardiovasc Imaging 18(1):539–542

    PubMed  Google Scholar 

  7. Chou KH, Bell LN (2007) Caffeine content of prepackaged national-brand and private-label carbonated beverages. J Food Sci 72(6):C337–C342

    Article  CAS  PubMed  Google Scholar 

  8. Crean A, Merchant N (2006) MR perfusion and delayed enhancement imaging in the heart. Clin Radiol 61(3):225–236

    Article  CAS  PubMed  Google Scholar 

  9. Douard H, Barat JL, Laurent F, Mora B, Baudet E, Broustet JP (1988) Magnetic resonance imaging of an anomalous origin of the left coronary artery from the pulmonary artery. Eur Heart J 9(12):1356–1360

    CAS  PubMed  Google Scholar 

  10. Foster EL, Arnold JW, Jekic M, Bender JA, Balasubramanian V, Thavendiranathan P, Dickerson JA, Raman SV, Simonetti OP (2012) MR-compatible treadmill for exercise stress cardiac magnetic resonance imaging. Magn Reson Med 67(3):880–889

    Article  PubMed  Google Scholar 

  11. Fricke TA, D’Udekem Y, Richardson M, Thuys C, Dronavalli M, Ramsay JM, Wheaton G, Grigg LE, Brizard CP, Konstantinov IE (2012) Outcomes of the arterial switch operation for transposition of the great arteries: 25 years of experience. Ann Thorac Surg 94(1):139–145

    Article  PubMed  Google Scholar 

  12. Gatlin S, Kalynych A, Sallee D, Campbell R (2011) Detection of a coronary artery anomaly after a sudden cardiac arrest in a 17 Year-old with D-transposition of the great arteries status post arterial switch operation: a case report. Congenit Heart Dis 6(4):384–388

    Article  PubMed  Google Scholar 

  13. Greenwood JP, Maredia N, Younger JF, Brown JM, Nixon J, Everett CC, Bijsterveld P, Ridgway JP, Radjenovic A, Dickinson CJ, Ball SG, Plein S (2012) Cardiovascular magnetic resonance and single-photon emission computed tomography for diagnosis of coronary heart disease (CE-MARC): a prospective trial. Lancet 379(9814):453–460

    Article  PubMed  PubMed Central  Google Scholar 

  14. Greil GF, Stuber M, Botnar RM, Kissinger KV, Geva T, Newburger JW, Manning WJ, Powell AJ (2002) Coronary magnetic resonance angiography in adolescents and young adults with Kawasaki disease. Circulation 105(8):908–911

    Article  PubMed  Google Scholar 

  15. Greil GF, Seeger A, Miller S, Claussen CD, Hofbeck M, Botnar RM, Sieverding L (2007) Coronary magnetic resonance angiography and vessel wall imaging in children with Kawasaki disease. Pediatr Radiol 37(7):666–673

    Article  PubMed  Google Scholar 

  16. Hamon M, Fau G, Nee G, Ehtisham J, Morello R, Hamon M (2010) Meta-analysis of the diagnostic performance of stress perfusion cardiovascular magnetic resonance for detection of coronary artery disease. J Cardiovasc Magn Reson 12(1):29. doi:10.1186/1532-429X-12-29

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hoffmann A, Engelfriet P, Mulder B (2007) Radiation exposure during follow-up of adults with congenital heart disease. Int J Cardiol 118(2):151–153

    Article  PubMed  Google Scholar 

  18. Ishida M, Schuster A, Morton G, Chiribiri A, Hussain S, Paul M, Merkle N, Steen H, Lossnitzer D, Schnackenburg B, Alfakih K, Plein S, Nagel E (2011) Development of a universal dual-bolus injection scheme for the quantitative assessment of myocardial perfusion cardiovascular magnetic resonance. J Cardiovasc Magn Reson 13:28. doi:10.1186/1532-429X-13-28

    Article  PubMed  PubMed Central  Google Scholar 

  19. Iskandrian AE, Bateman TM, Belardinelli L, Blackburn B, Cerqueira MD, Hendel RC, Lieu H, Mahmarian JJ, Olmsted A, Underwood SR, Vitola J, Wang W, ADVANCE MPI Investigators (2007) Adenosine versus regadenoson comparative evaluation in myocardial perfusion imaging: results of the ADVANCE phase 3 multicenter international trial. J Nucl Cardiol 14(5):645–658

    Article  PubMed  Google Scholar 

  20. Jahnke C, Nagel E, Gebker R, Kokocinski T, Kelle S, Manka R, Fleck E, Paetsch I (2007) Prognostic value of cardiac magnetic resonance stress tests: adenosine stress perfusion and dobutamine stress wall motion imaging. Circulation 115(13):1769–1776

    Article  PubMed  Google Scholar 

  21. JCS Joint Working Group (2010) Guidelines for diagnosis and management of cardiovascular sequelae in Kawasaki disease (JCS 2008)-digest version. Circ J 74(9):1989–2020

    Article  Google Scholar 

  22. Jekic M, Foster EL, Ballinger MR, Raman SV, Simonetti OP (2008) Cardiac function and myocardial perfusion immediately following maximal treadmill exercise inside the MRI room. J Cardiovasc Magn Reson 10:3. doi:10.1186/1532-429X-10-3

    Article  PubMed  PubMed Central  Google Scholar 

  23. Jogiya R, Kozerke S, Morton G, De Silva K, Redwood S, Perera D, Nagel E, Plein S (2012) Validation of dynamic 3-dimensional whole heart magnetic resonance myocardial perfusion imaging against fractional flow reserve for the detection of significant coronary artery disease. J Am Coll Cardiol 60(8):756–765

    Article  PubMed  Google Scholar 

  24. Khairy P, Clair M, Fernandes SM, Blume ED, Powell AJ, Newburger JW, Landzberg MJ, Mayer JE Jr (2013) Cardiovascular outcomes after the arterial switch operation for D-transposition of the great arteries. Circulation 127(3):331–339

    Article  PubMed  Google Scholar 

  25. Kozerke S, Plein S (2008) Accelerated CMR using zonal, parallel and prior knowledge driven imaging methods. J Cardiovasc Magn Reson 10:29. doi:10.1186/1532-429X-10-29

    Google Scholar 

  26. Kramer CM, Barkhausen J, Flamm SD, Kim RJ, Nagel E, Society for Cardiovascular Magnetic Resonance Board of Trustees Task Force on Standardized Protocols (2008) Standardized cardiovascular magnetic resonance imaging (CMR) protocols, society for cardiovascular magnetic resonance: board of trustees task force on standardized protocols. J Cardiovasc Magn Reson 10:35. doi:10.1186/1532-429X-10-35

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lim HG, Kim WH, Lee JR, Kim YJ (2013) Long-term results of the arterial switch operation for ventriculo-arterial discordance. Eur J Cardiothorac Surg 43(2):325–334

    Article  PubMed  Google Scholar 

  28. Lotz J, Meier C, Leppert A, Galanski M (2002) Cardiovascular flow measurement with phase-contrast MR imaging: basic facts and implementation. Radiographics 22(3):651–671

    Article  PubMed  Google Scholar 

  29. Manso B, Castellote A, Dos L, Casaldaliga J (2010) Myocardial perfusion magnetic resonance imaging for detecting coronary function anomalies in asymptomatic paediatric patients with a previous arterial switch operation for the transposition of great arteries. Cardiol Young 20(4):410–417

    Article  CAS  PubMed  Google Scholar 

  30. Mavrogeni S, Papadopoulos G, Douskou M, Kaklis S, Seimenis I, Baras P, Nikolaidou P, Bakoula C, Karanasios E, Manginas A, Cokkinos DV (2004) Magnetic resonance angiography is equivalent to X-ray coronary angiography for the evaluation of coronary arteries in Kawasaki disease. J Am Coll Cardiol 43(4):649–652

    Article  PubMed  Google Scholar 

  31. Mavrogeni S, Papadopoulos G, Douskou M, Kaklis S, Seimenis I, Varlamis G, Karanasios E, Krikos X, Giannoulia A, Cokkinos DV (2006) Magnetic resonance angiography, function and viability evaluation in patients with Kawasaki disease. J Cardiovasc Magn Reson 8(3):493–498

    Article  PubMed  Google Scholar 

  32. Mavrogeni S, Papadopoulos G, Karanasios E, Cokkinos DV (2008) How to image Kawasaki disease: a validation of different imaging techniques. Int J Cardiol 124(1):27–31

    Article  PubMed  Google Scholar 

  33. McAlindon E, Johnson TW, Strange J, Lawton C, Baumbach A, Bucciarelli-Ducci C (2012) Isolated anomalous right coronary artery from the pulmonary artery in adulthood: anatomical features and ischemic burden. Circulation 125(9):1183–1185

    Article  PubMed  Google Scholar 

  34. Motwani M, Maredia N, Fairbairn TA, Kozerke S, Radjenovic A, Greenwood JP, Plein S (2012) High-resolution versus standard-resolution cardiovascular MR myocardial perfusion imaging for the detection of coronary artery disease. Circ Cardiovasc Imaging 5(3):306–313

    Article  PubMed  Google Scholar 

  35. Newburger JW, Takahashi M, Gerber MA, Gewitz MH, Tani LY, Burns JC, Shulman ST, Bolger AF, Ferrieri P, Baltimore RS, Wilson WR, Baddour LM, Levison ME, Pallasch TJ, Falace DA, Taubert KA, Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease, Council on Cardiovascular Disease in the Young, American Heart Association (2004) Diagnosis, treatment, and long-term management of Kawasaki disease: a statement for health professionals from the Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease, Council on Cardiovascular Disease in the Young, American Heart Association. Pediatrics 114(6):1708–1733

    Article  PubMed  Google Scholar 

  36. Powles KE, Hessian RC, Ruddy TD (2008) Practicing safe SPECT: caffeine abstinence in nuclear myocardial perfusion imaging. J Nucl Cardiol 15(5):709–718

    Article  PubMed  Google Scholar 

  37. Prakash A, Powell AJ, Krishnamurthy R, Geva T (2004) Magnetic resonance imaging evaluation of myocardial perfusion and viability in congenital and acquired pediatric heart disease. Am J Cardiol 93(5):657–661

    Article  PubMed  Google Scholar 

  38. Rerkpattanapipat P, Gandhi SK, Darty SN, Williams RT, Davis AD, Mazur W, Clark HP, Little WC, Link KM, Hamilton CA, Hundley WG (2003) Feasibility to detect severe coronary artery stenoses with upright treadmill exercise magnetic resonance imaging. Am J Cardiol 92(5):603–606

    Article  PubMed  Google Scholar 

  39. Sato Y, Kato M, Inoue F, Fukui T, Imazeki T, Mitsui M, Matsumoto N, Takahashi M, Karasawa K, Ayusawa M, Kanamaru H, Harada K, Kanmatsuse K (2003) Detection of coronary artery aneurysms, stenoses and occlusions by multislice spiral computed tomography in adolescents with Kawasaki disease. Circ J 67(5):427–430

    Article  PubMed  Google Scholar 

  40. Schwitter J, Nanz D, Kneifel S, Bertschinger K, Buchi M, KNUSEL PR, Marincek B, Luscher TF, Von Schulthess GK (2001) Assessment of myocardial perfusion in coronary artery disease by magnetic resonance: a comparison with positron emission tomography and coronary angiography. Circulation 103(18):2230–2235

    Article  CAS  PubMed  Google Scholar 

  41. Schwitter J, Wacker CM, Wilke N, Al-Saadi N, Sauer E, Huettle K, Schonberg SO, Debl K, Strohm O, Ahlstrom H, Dill T, Hoebel N, Simor T, MR-IMPACT Investigators (2012) Superior diagnostic performance of perfusion-cardiovascular magnetic resonance versus SPECT to detect coronary artery disease: the secondary endpoints of the multicenter multivendor MR-IMPACT II (Magnetic Resonance Imaging for Myocardial Perfusion Assessment in Coronary Artery Disease Trial). J Cardiovasc Magn Reson 14:61

    Article  PubMed  PubMed Central  Google Scholar 

  42. Secinaro A, Ntsinjana H, Tann O, Schuler PK, Muthurangu V, Hughes M, Tsang V, Taylor AM (2011) Cardiovascular magnetic resonance findings in repaired anomalous left coronary artery to pulmonary artery connection (ALCAPA). J Cardiovasc Magn Reson 13:27. doi:10.1186/1532-429X-13-27

    Article  PubMed  PubMed Central  Google Scholar 

  43. Sharples L, Hughes V, Crean A, Dyer M, Buxton M, Goldsmith K, Stone D (2007) Cost-effectiveness of functional cardiac testing in the diagnosis and management of coronary artery disease: a randomised controlled trial. The CECaT trial. Health Technol Assess 11(49):iii–iv, ix-115

    Article  CAS  PubMed  Google Scholar 

  44. Soszyn N, Fricke TA, Wheaton GR, Ramsay JM, D’udekem Y, Brizard CP, Konstantinov IE (2011) Outcomes of the arterial switch operation in patients with Taussig-Bing anomaly. Ann Thorac Surg 92(2):673–679

    Article  PubMed  Google Scholar 

  45. Sparrow P, Plein S, Jones TR, Thorley PJ, Hale C, Sivananthan MU (2004) Tolerance of MRI vs. SPECT myocardial perfusion studies – a patient survey. J Magn Reson Imaging 19(4):410–416

    Article  PubMed  Google Scholar 

  46. Stoica S, Carpenter E, Campbell D, Mitchell M, Da Cruz E, Ivy D, Lacour-Gayet F (2012) Morbidity of the arterial switch operation. Ann Thorac Surg 93(6):1977–1983

    Article  PubMed  PubMed Central  Google Scholar 

  47. Suzuki A, Takemura A, Inaba R, Sonobe T, Tsuchiya K, Korenaga T (2006) Magnetic resonance coronary angiography to evaluate coronary arterial lesions in patients with Kawasaki disease. Cardiol Young 16(6):563–571

    Article  PubMed  Google Scholar 

  48. Tacke CE, Kuipers IM, Groenink M, Spijkerboer AM, Kuijpers TW (2011) Cardiac magnetic resonance imaging for noninvasive assessment of cardiovascular disease during the follow-up of patients with Kawasaki disease. Circ Cardiovasc Imaging 4(6):712–720

    Article  PubMed  Google Scholar 

  49. Thrupp SF, Gentles TL, Kerr AR, Finucane K (2012) Arterial switch operation: early and late outcome for intramural coronary arteries. Ann Thorac Surg 94(6):2084–2090

    Article  PubMed  Google Scholar 

  50. Tobler D, Fernandes SM, Wald RM, Landzberg M, Salehian O, Siu SC, Colman JM, Sermer M, Silversides CK (2010) Pregnancy outcomes in women with transposition of the great arteries and arterial switch operation. Am J Cardiol 106(3):417–420

    Article  PubMed  Google Scholar 

  51. Tobler D, Williams WG, Jegatheeswaran A, Van Arsdell GS, Mccrindle BW, Greutmann M, Oechslin EN, Silversides CK (2010) Cardiac outcomes in young adult survivors of the arterial switch operation for transposition of the great arteries. J Am Coll Cardiol 56(1):58–64

    Article  PubMed  Google Scholar 

  52. Vogel M, Smallhorn JF, Gilday D, Benson LN, Ash J, Williams WG, Freedom RM (1991) Assessment of myocardial perfusion in patients after the arterial switch operation. J Nucl Med 32(2):237–241

    CAS  PubMed  Google Scholar 

  53. Watkins S, Mcgeoch R, Lyne J, Steedman T, Good R, Mclaughlin MJ, Cunningham T, Bezlyak V, Ford I, Dargie HJ, Oldroyd KG (2009) Validation of magnetic resonance myocardial perfusion imaging with fractional flow reserve for the detection of significant coronary heart disease. Circulation 120(22):2207–2213

    Article  PubMed  Google Scholar 

  54. Yau JM, Singh R, Halpern EJ, Fischman D (2011) Anomalous origin of the left coronary artery from the pulmonary artery in adults: a comprehensive review of 151 adult cases and a new diagnosis in a 53-year-old woman. Clin Cardiol 34(4):204–210

    Article  PubMed  Google Scholar 

  55. Zoghbi GJ, Htay T, Aqel R, Blackmon L, Heo J, Iskandrian AE (2006) Effect of caffeine on ischemia detection by adenosine single-photon emission computed tomography perfusion imaging. J Am Coll Cardiol 47(11):2296–2302

    Article  CAS  PubMed  Google Scholar 

  56. Tobler D, Motwani M, Wald RM, Roche SL, Verocai F, Iwanochko RM, Greenwood JP, Oechslin EN, Crean AM (2014) Evaluation of a comprehensive cardiovascular magnetic resonance protocol in young adults late after the arterial switch operation for d-transposition of the great arteries. J Cardiovasc Magn Reson16:98

    Google Scholar 

  57. Deva DP, Torres FS, Wald RM, Roche SL, Jimenez-Juan L, Oechslin EN, Crean AM (2014) The value of stress perfusion cardiovascular magnetic resonance imaging for patients referred from the adult congenital heart disease clinic: 5-year experience at the Toronto General Hospital. Cardiol Young 24(5):822–830

    Google Scholar 

  58. Keir M, Wald RM, Roche SL, Oechslin EN, Horlick E, Osten MD, Benson LN, Hickey EJ, Crean AM (2015) Does a dedicated subspecialty ACHD coronary clinic result in greater consistency in approach and reduced loss to follow-up? An evaluation of the first 3 years of the Toronto Congenital Coronary Clinic for Adults.Prog Pediatr Cardiol 39(2):145–150

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew M. Crean .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag London

About this entry

Cite this entry

Crean, A.M., Deva, D.P., Wald, R. (2016). Emerging Role of Stress Perfusion Cardiovascular Magnetic Resonance in the Patient with Congenital Heart Disease. In: da Cruz, E., Ivy, D., Hraska, V., Jaggers, J. (eds) Pediatric and Congenital Cardiology, Cardiac Surgery and Intensive Care. Springer, London. https://doi.org/10.1007/978-1-4471-4999-6_250-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4999-6_250-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, London

  • Online ISBN: 978-1-4471-4999-6

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics