Advertisement

Motion Control

  • Chien Chern Cheah
  • Reza Haghighi
Reference work entry

Abstract

Robot manipulators have been widely used in industrial automation. In many modern robot control applications, sensory information such as visual feedback is used to improve positioning accuracy and robustness to uncertainty. This chapter introduces basic concepts and design methods that are employed for motion control of robot manipulators with uncertainty. The chapter covers both basic methods in joint-space control and advance topics in sensory task-space control.

Keywords

Joint Angle Robot Manipulator Controller Gain Task Space Lyapunov Function Candidate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abdallah CT, Dawson D, Dorato P, Jamshidi M (1991) Survey of robust control for rigid robots. IEEE Trans Control Syst Mag 11(2):24–30CrossRefGoogle Scholar
  2. Arimoto S (1994) A class of quasi-natural potentials and hyper-stable PID servo-loops for nonlinear robotic systems. Trans Soc Instrum Control Eng 30(9):1005–1012CrossRefGoogle Scholar
  3. Arimoto S (1996) Control theory of non-linear mechanical systems: a passivity-based and circuit-theoretic approach. Oxford University Press, New YorkMATHGoogle Scholar
  4. Arimoto S, Miyazaki F (1985)Asymptotic stability of feedback control for robot manipulators. In: Proceedings of IFAC symposium on robot control, Barcelona, pp 447–452Google Scholar
  5. Arimoto S, Miyazaki F (1984)Stability and robustness of PID feedback control for robot manipulators of sensory capability. In: Proceedings of the 1st international symposium on robotics research, pp 783–799Google Scholar
  6. Arimoto S, Kawamura S, Miyazaki F (1984) Bettering operation of robots by learning. J Robot Syst 1(2):123–140CrossRefGoogle Scholar
  7. Arimoto S, Naniwa T, Parra-Vega V, Whitcomb L (1994) A quasi-natural potential and its role in design of hyper-stable PID servo-loop for robotic systems. In: Proceedings of the CAI Pacific symposium control and industrial automation application, pp 110–117Google Scholar
  8. Berghuis H, Ortega R, Nijmeijer H (1993) A robust adaptive robot controller. IEEE Trans Robot Autom 9(6):825–830CrossRefGoogle Scholar
  9. Braganza D, Dixon WE, Dawson DM, Xian B (2005)Tracking control for robot manipulators with kinematic and dynamic uncertainty. In: Proceedings of IEEE conference on decision and control, Seville, pp 5293–5297Google Scholar
  10. Cheah CC (2003)Approximate Jacobian robot control with adaptive Jacobian matrix. In: Proceedings of IEEE international conference on decision and control, Hawaii, pp 5859–5864Google Scholar
  11. Cheah CC, Liaw H (2005) Inverse Jacobian regulator with gravity compensation: stability and experiment. IEEE Trans Robot Autom 21(4):741–747CrossRefGoogle Scholar
  12. Cheah CC, Kawamura S, Arimoto S (1998) Feedback control for robotic manipulators with uncertain kinematics and dynamics. In: Proceedings of IEEE international conference on robotics and automation, Leuven, pp 3607–3612Google Scholar
  13. Cheah CC, Kawamura S, Arimoto S (1999a) Feedback control for robotic manipulators with an uncertain Jacobian matrix. J Robot Syst 12(2):119–134CrossRefMathSciNetGoogle Scholar
  14. Cheah CC, Hirano M, Kawamura S, Arimoto S (2003) Approximate Jacobian control for robots with uncertain kinematics and dynamics. IEEE Trans Robot Autom 19(4):692–702CrossRefGoogle Scholar
  15. Cheah CC, Liu C, Slotine JJE (2004) Approximate Jacobian adaptive control for robot manipulators. In: Proceeding of IEEE international conference on robotics and automation, New Orleans, pp 3075–3080Google Scholar
  16. Cheah CC, Liu C, Slotine JJE (2006a) Adaptive tracking control for robots with unknown kinematic and dynamic properties. Int J Robot Res 25(3):283–296CrossRefGoogle Scholar
  17. Chien-Chern Cheah, Chao Liu, Slotine J-JE (2006b) Adaptive Jacobian tracking control of robots with uncertainties in kinematic, dynamic and actuator models. IEEE Trans Automat Contr 51(6):1024–1029Google Scholar
  18. Cheah CC, Liu C, Slotine JJE (2007) Adaptive vision based tracking control of robots with uncertainty in depth information. In: Proceedings of IEEE conference on roboties and automation, Roma, pp 2817–2822Google Scholar
  19. Cheah CC, Liu C, Slotine JJE (2010) Adaptive Jacobian vision based control for robots with uncertain depth information. Automatica 46:1228–1233CrossRefMATHMathSciNetGoogle Scholar
  20. Cheah CC, Kawamura S, Arimoto S, Lee K (1999) PID control for robotic manipulator with uncertain jacobian matrix. In: Proceedings of IEEE international conference on robotics and automation, Detroit, pp 494–499Google Scholar
  21. Craig JJ, Hsu P, Sastry SS (1987) Adaptive control of mechanical manipulators. Int J Robot Res 6(2):10–20CrossRefGoogle Scholar
  22. Dixon WE (2007) Adaptive regulation of amplitude limited robot manipulators with uncertain kinematics and dynamics. IEEE Trans Automat Control 52(3):488–493CrossRefMathSciNetGoogle Scholar
  23. Garcia-Rodriguez R, Parra-Vega V (2012) Cartesian sliding PID control schemes for tracking robots with uncertain Jacobian. Trans Inst Meas Control 34(4):448–462CrossRefGoogle Scholar
  24. Hutchinson S, Hager GD, Corke P (1996) A tutorial on visual servo control. IEEE Trans Autom Control 12(5):651–670CrossRefGoogle Scholar
  25. Ioannou P, Sun J (1996) Robust adaptive control. Prentice-Hall, Englewood CliffsMATHGoogle Scholar
  26. Kelly R (1993) Comments on adaptive PD controller for robot manipulators. IEEE Trans Robot Autom 9:117–119CrossRefGoogle Scholar
  27. Kelly R (1997) PD control with desired gravity compensation of robotic manipulators: a review. Int J Robot Res 16(5):660–672CrossRefGoogle Scholar
  28. Kelly R (1998) Global positioning of robot manipulators via PD control plus a class of nonlinear integral actions. IEEE Trans Autom Control 43(7):934–938CrossRefMATHGoogle Scholar
  29. Kelly R, Santibanez V, Loria A (2005) Control of robot manipulators in joint space. Springer–Verlag, LondonGoogle Scholar
  30. Koditschek DE (1987)Adaptive techniques for mechanical systems. In: 5th Yale workshop on applications of adaptive systems theory, New Haven, pp 259–265Google Scholar
  31. Lee KW, Khalil H (1997) Adaptive output feedback control of robot manipulators using high gain observer. Int J Control 67(6):869–886CrossRefMATHMathSciNetGoogle Scholar
  32. Lewis FL (1996) Neural network control of robot manipulators. Intell Syst Appl 11(3):64–75Google Scholar
  33. Liang X, Huang X, Wang M, Zeng X (2010) Adaptive task-space tracking control of robots without task-space- and joint-space-velocity measurements. IEEE Trans Robot 26(4):733–742CrossRefGoogle Scholar
  34. Middleton RH, Goodwin GC (1988) Adaptive computed torque control for rigid link manipulators. Syst Control Lett 10:9–16CrossRefMATHGoogle Scholar
  35. Niemeyer G, Slotine JJE (1991) Performance in adaptive manipulator control. Int J Robot Res 10(2):149–161CrossRefGoogle Scholar
  36. Ortega R, Spong MW (1989) Adaptive motion control of rigid robots: a tutorial. Automatica 25(6):877–888CrossRefMATHMathSciNetGoogle Scholar
  37. Ortega R, Loria A, Kelly R (1995) A semi-globally stable output feedback PI2D regulator for robot manipulators. IEEE Trans Autom Control 40(8):1432–1436CrossRefMATHMathSciNetGoogle Scholar
  38. Paden B, Panja R (1988) A globally asymptotically stable PD+ controller for robot manipulator. Int J Control 47(6):1697–1712CrossRefMATHGoogle Scholar
  39. Sadegh N, Horowitz R (1990) Stability and robustness analysis of a class of adaptive controllers for robotic manipulators. Int J Robot Res 9(3):74–92CrossRefGoogle Scholar
  40. Slotine JJE (1985) The robust control of robot manipulators. Int J Robot Res 4(2):49–61CrossRefGoogle Scholar
  41. Slotine JJE, Li W (1987) On the adaptive control of robot manipulators. Int J Robot Res 6(3):49–59CrossRefGoogle Scholar
  42. Slotine JJE, Li W (1991) Applied nonlinear control. Prentice Hall, Englewood CliffsMATHGoogle Scholar
  43. Spong MW (1992) On the robust control of robot manipulators. IEEE Trans Autom Control 37(11):1782–1786CrossRefMATHMathSciNetGoogle Scholar
  44. Spong MW, Hutchinson S, Vidyasagar M (2006) Robot modeling and control. Wiley, New YorkGoogle Scholar
  45. Takegaki M, Arimoto S (1981) A new feedback method for dynamic control of manipulators. ASME J Dyn Syst Meas Control 103:119–125CrossRefMATHGoogle Scholar
  46. Tomei P (1991) Adaptive PD controller for robot manipulators. IEEE Trans Robot Autom 7:565–570CrossRefMathSciNetGoogle Scholar
  47. Wang H, Xie Y (2009) Prediction error based adaptive Jacobian tracking of robots with uncertain kinematics and dynamics. IEEE Trans Automat Control 54(12):2889–2894, art. no. 5332275CrossRefMathSciNetGoogle Scholar
  48. Wang H, Liu YH, Zhou D (2007) Dynamic visual tracking for manipulators using an uncalibrated fixed camera. IEEE Trans Robot 23(3):610–617CrossRefGoogle Scholar
  49. Wen JT, Bayard D (1988) New class of control laws for robotic manipulators Part 2. Adaptive case. Int J Control 47(5):1387–1406CrossRefMATHMathSciNetGoogle Scholar
  50. Ziegler JG, Nichols NB (1942) Optimum settings for automatic controllers. ASME Trans 64:759–768Google Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  1. 1.School of Electrical and Electronic EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations