Skip to main content

Nano-gap Electrodes Developed Using Focused Ion Beam Technology

  • Reference work entry
  • First Online:

Abstract

Maskless fabrication methods for nanogap electrodes using sputter etching with a Ga focused ion beam (FIB) are presented. These methods are based on the in situ monitoring of the etching steps by measuring the current through patterned electrode films. The etching steps were terminated electrically at a predetermined current level. In the present experiment, a 30-keV Ga FIB with a beam size of ~12 nm was irradiated on double-layered films consisting of a 10–30-nm-thick Au top electrode layer and a 1–2-nm-thick Ti bottom adhesion layer to form nanowires and nanogaps. Electrode gaps that were much narrower than the beam size could be reproducibly fabricated using the presented method. The controllability of the fabrication steps was significantly improved by using triple-layered films consisting of a thin Ti top layer, Au electrode, and a bottom Ti adhesion layer. The minimum gap width achieved was ~3 nm, and the fabrication yield reached ~90 % for ~3–6-nm wide gaps. Most of the fabricated nanogap electrodes showed high insulating resistances, ranging from 1 GΩ to 1 TΩ. The applicability of the fabricated nanogap electrodes to electron transport studies of nanometer-sized objects was examined using electrical measurements of Au colloidal nanoparticles.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   1,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aviram A, Ratner MA (1974) Molecular rectifiers. Chem Phys Lett 29:277

    Article  Google Scholar 

  • Bezryadin A, Dekker C, Schmid G (1997) Electrostatic trapping of single conducting nanoparticles between nanoelectrodes. Appl Phys Lett 71:1273

    Article  Google Scholar 

  • DeMarco AJ, Melngailis J (1999) Lateral growth of focused ion beam deposited platinum for stencil mask repair. J Vacuum Sci Technol B17:3154

    Article  Google Scholar 

  • Durkan C, Schneider MA, Welland ME (1999) Analysis of failure mechanisms in electrically stressed Au nanowires. J Appl Phys 86:1280

    Article  Google Scholar 

  • Gamo K, Namba S (1990) Ion beam assisted etching and deposition. J Vacuum Sci Technol B8:1927

    Google Scholar 

  • Gamo K, Takakura N, Samoto N, Shimizu R, Namba S (1984) Ion beam assisted deposition of metal organic films using focused ion beams. Jpn J Appl Phys 23:L293

    Article  Google Scholar 

  • Hatzor A, Weiss PS (2001) Molecular rulers for scaling down nanostructures. Science 291:1019

    Google Scholar 

  • Klein DL, McEuen PL, Katari JEB, Roth R, Alivisatos AP (1996) An approach to electrical studies of single nanocrystals. Appl Phys Lett 68:2574

    Article  Google Scholar 

  • Lambert MF, Goffman MF, Bourgoin JP, Hesto P (2003) Fabrication and characterization of sub-3 nm gaps for single-cluster and single-molecule experiments. Nanotechnology 14:772

    Article  Google Scholar 

  • Li T, Hu W, Zhu D (2010) Nanogap electrodes. Adv Mater 22:286

    Article  Google Scholar 

  • Liu K, Avouris P, Bucchignano J, Martel R, Sun S, Michl J (2002) Simple fabrication scheme for sub-10 nm electrode gaps using electron-beam lithography. Appl Phys Lett 80:865

    Article  Google Scholar 

  • McCarty GS (2004) Molecular lithography for wafer-scale fabrication of molecular junctions. Nano Lett 4:1391

    Article  Google Scholar 

  • Morpurgo AF, Marcus CM, Robinson DB (1999) Controlled fabrication of metallic electrodes with atomic separation. Appl Phys Lett 74:2084

    Article  Google Scholar 

  • Muller CJ, Vleeming BJ, Reed MA, Lamba JJS, Hara R, Jones L II, Tour JM (1996) Atomic probes: a search for conduction through a single molecule. Nanotechnology 7:409

    Article  Google Scholar 

  • Nagase T, Kubota T, Mashiko S (2003) Fabrication of nano-gap electrodes for measuring electrical properties of organic molecules using a focused ion beam. Thin Solid Films 438–439:374

    Article  Google Scholar 

  • Nagase T, Gamo K, Kubota T, Mashiko S (2005) Maskless fabrication of nanoelectrode structures with nanogaps by using Ga focused ion beams. Microelectron Eng 78–79:253

    Article  Google Scholar 

  • Nagase T, Gamo K, Kubota T, Mashiko S (2006a) Direct fabrication of nano-gap electrodes by focused ion beam etching. Thin Solid Films 499:279

    Article  Google Scholar 

  • Nagase T, Gamo K, Ueda R, Kubota T, Mashiko S (2006b) Maskless fabrication of nanogap electrodes by using Ga-focused ion beam etching. J Microlithogr Microfabr Microsyst 5:011006

    Google Scholar 

  • Nakayama M, Wakaya F, Yanagisawa J, Gamo K (1998) Focused ion beam etching of resist/Ni multilayer films and applications to metal island structure formation. J Vacuum Sci Technol B16:2511

    Article  Google Scholar 

  • Neureuther AR, Liu CY, Ting CH (1979) Modeling ion milling. J Vacuum Sci Technol 16:1767

    Article  Google Scholar 

  • Park H, Lim AKL, Alivisatos AP, Park J, McEuen PL (1999) Fabrication of metallic electrodes with nanometer separation by electromigration. Appl Phys Lett 75:301

    Article  Google Scholar 

  • Park H, Park J, Lim AKL, Anderson EH, Alivisatos AP, McEuen PL (2000) Nanomechanical oscillations in a single-C60 transistor. Nature 407:57

    Article  Google Scholar 

  • Park J, Pasupathy AN, Goldsmith JI, Chang C, Yaish Y, Petta JR, Rinkoski M, Sethna JP, Abruna HD, McEuen PL, Ralph DC (2002) Coulomb blockade and the Kondo effect in single-atom transistors. Nature 417:722

    Article  Google Scholar 

  • Reed MA, Zhou C, Muller CJ, Burgin TP, Tour JM (1997) Conductance of a molecular junction. Science 278:252

    Article  Google Scholar 

  • Saifullah MSM, Ondarcuhu T, Koltsov DK, Joachim C, Welland ME (2002) A reliable scheme for fabricating sub-5 nm co-planar junctions for single-molecule electronics. Nanotechnology 13:659

    Article  Google Scholar 

  • Shigeto K, Kawamura M, Kasumov AY, Tsukagoshi K, Kono K, Aoyagi Y (2006) Reproducible formation of nanoscale-gap electrodes for single-molecule measurements by combination of FIB deposition and tunneling current detection. Microelectron Eng 83:1471

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Nagase .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this entry

Cite this entry

Nagase, T. (2015). Nano-gap Electrodes Developed Using Focused Ion Beam Technology. In: Nee, A. (eds) Handbook of Manufacturing Engineering and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-4670-4_69

Download citation

Publish with us

Policies and ethics