Skip to main content

Micro Tools Fabrication by Focused Ion Beam Technology

  • Reference work entry
  • First Online:
Handbook of Manufacturing Engineering and Technology

Abstract

With the trends towards miniaturization, micro-systems, sophisticated devices, and miniaturized three-dimensional (3D) structures are in great demands, which stimulate the development of micro-/nano-manufacturing technologies. Micro-/nano-cutting is one of the most important methods in micro-/nano-manufacturing and it is capable of fabricating microstructures on various materials. However, research and development of the micro-cutting tools largely determined the progress of micro-/nano-cutting technologies and their applications. As a novel fabrication technology, focused ion beam (FIB) direct writing is capable of fabricating the microtools with specific tool profile and nanometric cutting edge. In this chapter, various efforts to fabricate geometrically complex and sharp microtools are described. The fabrication techniques and their performance and applications are discussed. The characteristics of the FIB related to its material processing rates and surface morphologies are introduced. Furthermore, the machining technique and applications using microtools are discussed and their future developments on microtool fabrication by FIB are provided as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams DP, Vasileb MJ, Krishnanb ASM (2000) Microgrooving and microthreading tools for fabricating curvilinear features. Precis Eng 24:347–356. doi:10.1016/S0141-6359(00)00045-3

    Article  Google Scholar 

  • Adams DP, Vasile MJ, Benavides G (2001) Micromilling of metal alloys with focused ion beam-fabricated tools. Precis Eng 25:107–113. doi:10.1016/S0141-6359(00)00064-7

    Article  Google Scholar 

  • Adams DP, Vasile MJ, Mayer TM, Hodges VC (2003) Focused ion beam milling of diamond: effects of H2O on yield, surface morphology, and microstructure. J Vac Sci Technol B 21(6):2334–2343

    Article  Google Scholar 

  • Alting L, Kimura F, Hansen HN, Bissacco G (2003) Micro engineering. Ann CIRP Keynote. doi:10.1016/S0007-8506(07)60208-X

    Google Scholar 

  • Bradley RM, Harper James ME (1988) Theory of ripple topography induced by ion bombardment. J Vac Sci Technol A 6(4):2390–2395. doi:10.1116/1.575561

    Article  Google Scholar 

  • Carter G (1999) The effects of surface ripples on sputtering erosion rates and secondary ion emission yields. J Appl Phys 85(1):455–459. doi:10.1063/1.369408

    Article  Google Scholar 

  • Chouffani K, Ãœberall H (1999) Low energy channeling radiation experiments in a germanium crystal. Phys Stat Sol B 152:479–493

    Google Scholar 

  • Corbett J, McKeon PA, Peggs GN, Whatmore R (2000) Nanotechnology: international developments and emerging product. Ann CIRP 49:523–546. doi:10.1016/S0007-8506(07)63454-4

    Article  Google Scholar 

  • Ding X, Lim GC, Cheng CK, Butler DL, Shaw KC, Liu K et al (2008) Fabrication of a micro-size diamond tool using a focused ion beam. J Micromech Microeng 18:075017. doi:10.1088/0960-1317/18/7/075017

    Article  Google Scholar 

  • Ding X, Liu K, Shaw KC, Thoe TB (2009) Ultra-precision cutting of micro-channels on Ni-copper: effects on diamond cutter tool wear and workpiece surface finish. SIMTech Tech Rep 10(4):209–215

    Google Scholar 

  • Ding X, Jarfors AEW, Lim GC (2012) A study of the cutting performance of poly-crystalline oxygen free copper with single crystalline diamond micro-tools. Precis Eng 36(1):141–152

    Article  Google Scholar 

  • Fang FZ, Wu H, Liu XD, Liu YC, Ng ST (2003) Tool geometry study in micromachining. J Micromech Microeng 13:726–731. doi:10.1088/0960-1317/13/5/327

    Article  Google Scholar 

  • Fang FZ, Xu ZW, Hu XT, Wang CT, Luo XJ, Fu YQ (2010) Nano-photomask fabrication using focused ion beam direct writing. CIRP Ann Manuf Technol 59:543–546. doi:10.1016/j.cirp.2010.03.038

    Article  Google Scholar 

  • Fu YQ, Liu Y, Zhou XL, Xu ZW, Fang FZ (2010) Experimental investigation of superfocusing of plasmonic lens with chirped circular nanoslits. Opt Express 18:3438–3443. doi:10.1364/OE.18.003438

    Article  Google Scholar 

  • Harriott LR (1995) Focused-ion-beam-induced gas etching. Jpn J Appl Phys Part 1 33:7094–7098. doi:10.1143/JJAP.33.7094

    Article  Google Scholar 

  • Herzig HP (1997) Micro-optics: elements, systems and applications. Taylor & Francis, London

    Google Scholar 

  • Ikawa N, Shimada S, Tanaka H (1992) Minimum thickness of cut in micromachining. Nanotechnology 3:6–9. doi:10.1088/0957-4484/3/1/002

    Article  Google Scholar 

  • Kempshall BW, Schwarz SM, Prenitzer BI, Giannuzzi LA, Irwin RB, Stevie FA (2001) Ion channeling effects on the focused ion beam milling of Cu. J Vac Sci Technol B 19:749–754. doi:10.1116/1.1368670

    Article  Google Scholar 

  • Kitahara T, Ishikawa Y, Terada T, Nakajima N, Fuurta K (1996) Development of Micro-lathe. J Mech Eng Lab 50(5):117–123

    Google Scholar 

  • Lai M, Zhang XD, Fang FZ (2012) Study on critical rake angle in nanometric cutting. Appl Phys A: Mater Sci Process 108(4):809–818. doi:10.1007/s00339-012-6973-8

    Article  Google Scholar 

  • Lang W (1999) Reflexions on the future of microsystem. Sens Actuator 72:1–15. doi:10.1016/S0924-4247(98)00205-2

    Article  Google Scholar 

  • Madou MJ (1997) Fundamentals of microfabrication. CRC Press, Boca Raton

    Google Scholar 

  • Maruo S, Saeki T (2008) Femtosecond laser direct writing of metallic microstructures by photoreduction of silver nitrate in a polymer matrix. Opt Express 16:1174–1179. doi:10.1364/OE.16.001174

    Article  Google Scholar 

  • Masuzawa T (2000) State of the art of micromachining. Ann CIRP 49:473–488. doi:10.1016/S0007-8506(07)63451-9

    Article  Google Scholar 

  • Ohmori H, Katahira K, Uehara Y, Watanabe Y, Lin W (2003) Improvement of mechanical strength of micro tools by controlling surface characteristics. CIRP Ann 52(1):467–470. doi:10.1016/S0007-8506(07)60627-1

    Article  Google Scholar 

  • Picard YN, Adams DP, Vasile MJ (2003) Focused ion beam-shaped microtools for ultra-precision machining of cylindrical components. Precis Eng 27(59):69. doi:10.1016/S0141-6359(02)00188-5

    Google Scholar 

  • Riedl MJ (1995) Diamond-turned diffractive optical elements for the infrared. Proc SPIE 2540:257–269. doi:10.1117/12.219529

    Article  Google Scholar 

  • Rubanov S, Suvorova A (2012) Structural characterization of diamond damage induced by Ga+focused ion beam. In: The 15th European Microscopy Congress Manchester Central, UK

    Google Scholar 

  • Russell PE, Stark TJ, Griffis DP, Phillips JR, Jarausch KF (1998) Chemically and geometrically enhanced focused ion beam micromachining. J Vac Sci Technol B16:2494–2498. doi:10.1116/1.590197

    Article  Google Scholar 

  • Sergey R, Alexandra S (2011) Ion implantation in diamond using 30 keV Ga + focused ion beam. Diam Relat Mater 20:1160–1164

    Article  Google Scholar 

  • Shimada S, Ikawa N, Tanaka H, Ohmori G, Uchikoshi J, Yoshinaga H (1993a) Feasibility study of ultimate accuracy in microcutting using molecular dynamics simulation. CIRP Ann 42:91–94. doi:10.1016/S0007-8506(07)62399-3

    Article  Google Scholar 

  • Shimada S, Ikawa N, Tanaka H, Ohmori G, Uchikoshi J (1993b) Molecular dynamics analysis of cutting force and chip formation process in microcutting. J Jpn Soc Precis Eng 59(12):2015–2021

    Article  Google Scholar 

  • Shimada S, Ikawa N, Tanaka H, Uchikoshi J (1994) Structure of micromachined surface simulated by molecular dynamics analysis. CIRP Ann 43(1):51–54. doi:10.1016/S0007-8506(07)62162-3

    Article  Google Scholar 

  • Stanishevsky A (2001) Patterning of diamond and amorphous carbon films using focused ion beams. Thin Solid Films 398–399:560–565. doi:10.1016/S0040-6090(01)01318-9

    Article  Google Scholar 

  • Taniguchi J, Ohno N, Takeda S, Miyamoto I, Komuro M (1998) Focused-ion-beam-assisted etching of diamond in XeF2. J Vac Sci Technol B16:2506–2510. doi:10.1116/1.590199

    Article  Google Scholar 

  • Tseng AA (2004) Recent developments in micromilling using focused ion beam technology. J Micromech Microeng 14:15–34. doi:10.1088/0960-1317/14/4/R01

    Article  Google Scholar 

  • Vasile MJ, Nassar R, Xie J, Guo H (1990) Microfabrication techniques using focused ion beams and emergent applications. Micron 30:235–244

    Article  Google Scholar 

  • Vietzke E, Refke A, Philipps V, Hennes M (1997) Energy distributions and yields of sputtered C2 and C3 clusters. J Nucl Mat 241–243:810–815. doi:10.1016/S0022-3115(96)00611-3

    Article  Google Scholar 

  • Weck M, Fischer S, Vos M (1999) Fabrication of micro components using ultra precision machine tools. Nanotechnology 8:145–148

    Article  Google Scholar 

  • Weima JA, Fahrner WR, Job R (2001) Experimental investigation of the parameter dependency of the removal rate of the thermochemically polished CVD diamond films. J Solid State Electrochem 5:112–118. doi:10.1007/s100080000118

    Article  Google Scholar 

  • Winters HF, Coburn JW (1992) Surface science aspects of etching reactions. Surf Sci Rep 14:161–269. doi:10.1016/0167-5729(92)90009-Z

    Article  Google Scholar 

  • Woon KS, Rahman M, Fang FZ, Neo KS, Liu K (2008) Investigations of tool edge radius effect in micromachining: a FEM simulation approach. J Mater Process Technol 195:204–211

    Article  Google Scholar 

  • Xu ZW, Fang FZ, Zhang SJ, Zhang XD, Hu XT, Fu YQ, Li L (2010) Fabrication of micro DOE using micro tools shaped with focused ion beam. Opt Express 18:8025–8032

    Article  Google Scholar 

  • Yi AY, Li L (2005) Design and fabrication of a microlens array by use of a slow tool servo. Opt Lett 30:1707–1709. doi:10.1364/OL.30.001707

    Article  Google Scholar 

  • Yuan ZJ, Zhou M, Dong S (1996) Effect of diamond tool sharpness on minimum cutting thickness and cutting surface integrity in ultraprecision machining. J Mater Process Technol 62:327–330. doi:10.1016/S0924-0136(96)02429-6

    Article  Google Scholar 

  • Zaitsev AM, Kosaca G, Richarz B et al (1998) Thermochemical polishing of CVD diamond films. Diamond Relat Mater 7:1108–1117. doi:10.1016/S0925-9635(98)00158-7

    Article  Google Scholar 

  • Zhang SJ (2009) Study on micro-tools fabrication by focused ion beam technology and key techniques [Doctor Thesis]. Tianjin University, Tianjin, China (In Chinese)

    Google Scholar 

  • Zhang SJ, Fang FZ, Xu ZW, Hu XT (2009) Controlled morphology of microtools shaped using focused ion beam milling technique. J Vac Sci Technol B 27(3):1304–1309. doi:10.1116/1.3054294

    Article  Google Scholar 

  • Zong WJ, Li D, Sun T et al (2007a) The ultimate sharpness of single-crystal diamond cutting tools, Part II: a novel efficient lapping process. Int J Mach Tool Manuf 47:852–863

    Article  Google Scholar 

  • Zong WJ, Cheng K, Li D, Sun T, Liang YC (2007b) The ultimate sharpness of single crystal diamond cutting tools-Part Ι. Theoretical analyses and predictions. Int J Mach Tool Manuf 47(5):852–863

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this entry

Cite this entry

Wu, W., Li, W., Fang, F., Xu, Z.W. (2015). Micro Tools Fabrication by Focused Ion Beam Technology. In: Nee, A. (eds) Handbook of Manufacturing Engineering and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-4670-4_67

Download citation

Publish with us

Policies and ethics