Skip to main content

Solid State Microjoining Processes in Manufacturing

  • Reference work entry
  • First Online:
Handbook of Manufacturing Engineering and Technology

Abstract

This chapter presents the solid-state bonding technologies, in particular the thermocompression bonding and thermosonic bonding technologies, which are used to form microjoints in the electronics industry. The diffusion bonding mechanism and the key bonding conditions required to form reliable joints are presented. Moreover, the recent progresses in the thermocompression bonding and thermosonic ball-wedge bonding technologies are highlighted. Lastly, the effects of different bonding materials and their surface characteristics on the joints’ performance are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ang XF, Zhang GG, Wei J, Chen Z, Wong CC (2006) Temperature and pressure dependence in thermocompression gold stud bonding. Thin Solid Films 504:379–383

    Article  Google Scholar 

  • Ang XF, Li FY, Tan WL, Chen Z, Wong CC, Wei J (2007) Self-assembled monolayers for reduced temperature direct metal thermocompression bonding. Appl Phys Lett 91(6):061913

    Article  Google Scholar 

  • Ang XF, Chen Z, Wong CC, Wei J (2008a) Effect of chain length in low temperature gold-gold bonding by self-assembled monolayers. Appl Phys Lett 92(13):131913

    Article  Google Scholar 

  • Ang XF, Li FY, Wei J, Tan WL, Wong CC (2008b) A thermal and passivation study of self-assembled monolayers on thin gold films. Thin Solid Films 516(16):5721–5724

    Article  Google Scholar 

  • Ang XF, Wei J, Chen Z, Wong CC (2009) Enabling low temperature copper bonding with an organic monolayer. Adv Mater Res 74:133–136

    Article  Google Scholar 

  • ASM Handbook (1995) Alloy phase diagram, vol 3. ASM International, Materials Park

    Google Scholar 

  • Breach CD (2010) What is the future of bonding wire? Will Cu entirely replace Au? Gold Bullet 43(3):150–168

    Article  Google Scholar 

  • Camenschi G, Sandru N (1980) Dynamic aspects in wire drawing problem. Lett Appl Eng Sci 18:999–1007

    MATH  Google Scholar 

  • Chew YH, Wong CC, Breach CD, Wulff F, Mhaisalkar SG, Pang CI, Saraswati (2004) Effects of Ca and Pd on mechanical properties and stored energy of hard drawn Au bonding wire. Thin Solid Films 462–463:346–350. doi:10.1016/j.tsf.2004.05.079

    Article  Google Scholar 

  • Chin LC, Ang XF, Wei J, Chen Z, Wong CC (2006) Enhancing direct metal bonding with self-assembled monolayers. Thin Solid Films 504(1–2):367–370

    Article  Google Scholar 

  • Cullity BD (1978) Elements of X-ray diffraction, 2nd edn. Addison-Wesley, Reading

    Google Scholar 

  • Derby B (1981) Theoretical model of diffusion bonding. PhD thesis, Cambridge University, Cambridge

    Google Scholar 

  • Fan C, Abys JA, Blair A (1999) Au and Al wire bonding to Pd surface finishes. Circuit World 25(3):23–27

    Article  Google Scholar 

  • Fontana MG (1987) Corrosion engineering, 3rd edn. McGraw-Hill Book, New York

    Google Scholar 

  • Gould JE (2008) Mechanisms of solid-state bonding processes. In: Zhou Y (ed) Microjoining and nanojoining, pp 3–24

    Google Scholar 

  • Harman GG (1997) Wire bonding in microelectronics – materials, processes, reliability and yield, 2nd edn. McGraw Hill, New York

    Google Scholar 

  • Huang IJ, Ayyaswamy PS, Cohen IM (1995) Melting and solidification of thin wires: a class of phase-change problems with a mobile interface. Int J Heat Mass Transf 38(9):1637–1659

    Article  MATH  Google Scholar 

  • Johnson RW, Palmer MJ, Bozack MJ, Isaacs-Smith T (1999) Thermosonic Au wire bonding to laminate substrates with Pd surface finishes. IEEE Trans Elec Pack Manuf 22(1):7–15

    Article  Google Scholar 

  • Kazakov NF (1985) Diffusion bonding of materials. Mir Publishers, Moscow

    Google Scholar 

  • Kim YG, Pavuluri JK, White JR, Busch-Vishniac IJ, Masada GY (1995) Thermocompression bonding effects on bump-pad adhesion. IEEE Trans Comp, Packag Manuf Technol 18:192–199

    Article  Google Scholar 

  • Kim TH, Howlader MMR, Itoh T, Suga T (2003) Room temperature Cu-Cu direct bonding using surface activated bonding method. J Vac Sci Technol A 21(2):449–453

    Article  Google Scholar 

  • Ko CT, Chen KN (2012) Low temperature bonding technology for 3D integration. Microelectron Reliab 52(2):302–311

    Article  Google Scholar 

  • Krabbenborg B (1999) High current bond design rules based on bond pad degradation and fusing of the wire. Microelecron Rel 39:77–88

    Article  Google Scholar 

  • Li J, Foo QH, Ang XF, Wei J, Wong CC (2009) Chain length dependence of SAMs-assisted copper thermocompression bonding. Adv Mater Res 74:291–294

    Article  Google Scholar 

  • Li J, Ang XF, Lee KH, Romanato F, Wong CC (2010) In-situ monitoring of the thermal desorption of alkanethiols with surface plasmon resonance spectroscopy (SPRS). J Nanosci Nanotechnol 10:1–5

    Article  Google Scholar 

  • Lin YW, Wang RY, Ke WB, Wang IS, Chiu YT, Lu KC, Lin KL, Lai YS (2012) The Pd distribution and Cu flow pattern of the Pd plated Cu wire bond and their effect on the nanoindentation. Mater Sci Eng A 543:151–157

    Article  Google Scholar 

  • Loh E (1983) Physical analysis of data on fused open bond wires. IEEE Trans CHMT 6(2):209–217

    MathSciNet  Google Scholar 

  • Maiocco L, Smyers D, Munroe PR, Baker I (1990) Correlation between electrical resistance and microstructure in Au wire bonds on Al films. IEEE Trans CHMT 13(3):592–595

    Google Scholar 

  • Mertol A (1995) Estimation of Al and Au bond wire fusing current and fusing time. IEEE Trans Comp Pack Manu Tech B 18(1):210–214

    Article  Google Scholar 

  • Murali S (2006) Formation and growth of intermetallics in thermosonic wire bonds: Significance of vacancy-solute binding energy. J Alloys Comp 426:200–204

    Article  Google Scholar 

  • Murali S, Srikanth N (2006) Acid decapsulation of epoxy molded IC packages with Cu wire bonds. IEEE Trans Elec Pack Manuf 29(3):179–183

    Article  Google Scholar 

  • Murali S, Srikanth N, Charles JV III (2003a) Grains, deformation substructures, and slip bands observed in thermosonic Cu ball bonding. Mater Character 50:39–50

    Article  Google Scholar 

  • Murali S, Srikanth N, Charles JV III (2003b) An analysis of intermetallic formation of Au and Cu ball bonding on thermal aging. Mater Res Bull 38:637–646

    Article  Google Scholar 

  • Murali S, Srikanth N, Charles JV III (2004) Effect of wire size on the formation of intermetallics and Kirkendall voids on thermal ageing of thermosonic wire bonds. Mater Lett 58:3096–3101

    Article  Google Scholar 

  • Murali S, Srikanth N, Wong YM, Charles JV III (2007) Fundamentals of thermosonic Cu wire bonding in microelectronics packaging. J Mater Sci 42:615–623. doi:10.1007/s10853-006-1148-7

    Article  Google Scholar 

  • Onuki J, Suwa M, Iizuka T, Okikawa S (1986) Ball formation of Al ball bonding. IEEE Trans CHMT 8(4):559–563

    Google Scholar 

  • Oppermann H, Dietrich L (2012) Nanoporous gold bumps for low temperature bonding. Microelectron Reliab 52(2):356–360

    Article  Google Scholar 

  • Prasad SK (2004) Advanced wirebond interconnection technology. Kluwer Academic, Boston

    Google Scholar 

  • Qi G, Zhang S (1997) Recrystallization of Au alloys for producing fine bonding wires. J Mater Proc Tech 68:288–293

    Article  Google Scholar 

  • QiJia Chen, Pagba A, Reynoso D, Thomas S, Toc HJ (2010) Cu wire and beyond – Ag wire an alternative to Cu? In: 12th electronic pack technology conference, Singapore, pp 591–596

    Google Scholar 

  • Srikanth N, Premkumar J, Sivakumar M, Wong YM, Charles JV III (2007) Effect of wire purity on Cu wire bonding. In: 9th electronic pack technology conference, Singapore, pp 755–759

    Google Scholar 

  • Su P, Seki H, Ping C, Zenbutsu S, Itoh S, Huang L, Liao N, Liu B, Chen C, Tai W, Tseng A (2011) An evaluation of effects of molding compound properties on reliability of Cu wire components. In: IEEE electronic components and technology conference, Lake Buena Vista, FL, pp 363–369 (978-1-61284-498-5/11)

    Google Scholar 

  • Taklo MMV, StorĂĄs P, Schjølberg-Henriksen K, Hasting HK, Jakobsen H (2004) Strong, high-yield and low-temperature thermocompression silicon wafer-level bonding with gold. J Micromech Microeng 14:884–890

    Article  Google Scholar 

  • Tan CS, Lim DF, Singh SG, Goulet SK, Bergkvist M (2009) Cu–Cu diffusion bonding enhancement at low temperature by surface passivation using self-assembled monolayer of alkane-thiol. Appl Phys Lett 95:192108

    Article  Google Scholar 

  • Tang LJ, Ho HM, Zhang YJ, Lee YM, Lee CW (2010) Investigation of Pd distribution on the free air ball of Pd coated Cu wire. In: 12th electronic pack technology conference, Singapore, pp 777–781

    Google Scholar 

  • Tanna S, Pisigan JL, Song WH, Halmo C, Persic J, Mayer M (2012) Low cost Pd coated Ag bonding wire for high quality FAB in air. In: Electronic Components and Technology Conference (ECTC), 2012 I.E. 62nd, San Diego, CA, pp 1103–1109 (978-1-4673-1965-2/12)

    Google Scholar 

  • Tench DM (1994) Solderability assessment via SERA. J App Electrochem 24:46–50

    Google Scholar 

  • Tsau CH (2003) Fabrication and characterization of wafer-level gold thermocompression bonding. MIT, Cambridge, MA

    Google Scholar 

  • Tsau CH, Spearing SM, Schmidt MA (2002) Fabrication of wafer-level thermocompression bonds. J Microelectromech Syst 11(6):641–647

    Article  Google Scholar 

  • Tsau CH, Spearing SM, Schmidt MA (2004) Characterization of wafer-level thermocompression bonds. IEEE J Microelectromech Syst 13(6):963–971

    Article  Google Scholar 

  • Wang PI, Lee SH, Parker TC, Frey MD, Karabacak T, Lu JQ, Lu TM (2009) Low temperature bonding by copper nanorod array. Electrochem Solid-State Lett 12(4):H138–H141

    Article  Google Scholar 

  • Xu H, Liu C, Silberschmidt VV, Pramana SS, White TJ, Chen Z (2009) A re-examination of the mechanism of thermosonic Cu ball bonding on Al metallization pads. Scr Mater 61:165–168

    Article  Google Scholar 

  • Zhong ZW (2009) Wire bonding using Cu wire. Microelectron Int 26(1):10–16

    Article  Google Scholar 

  • Zompi A, Cipparrone M, Levi R (1991) Computer aided wire drawing. Ann CIRP 40(1):319–322

    Article  Google Scholar 

Download references

Acknowledgement

For section “Advances in the Manufacturing of Thermosonic Ball-Wedge Bonding,” the authors sincerely thank their fellow colleagues from R&D-APL, R&D-MCL, MTD, QA, and engineering divisions of Heraeus Materials Singapore Pte. Ltd. for the data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharon Mui Ling Nai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this entry

Cite this entry

Nai, S.M.L., Sarangapani, M., Yeung, J. (2015). Solid State Microjoining Processes in Manufacturing. In: Nee, A. (eds) Handbook of Manufacturing Engineering and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-4670-4_60

Download citation

Publish with us

Policies and ethics