Arc Welding

  • N. Kishore Babu
  • Mahesh Kumar Talari
  • Sun Zheng
  • Pan Dayou
  • S. Jerome
  • V. Muthupandi
Reference work entry


This book chapter deals with the basics of arc welding processes, heat source used for arc welding, different types of arc polarities, effect of shielding gases, and welding power sources necessary for arc welding. The fundamentals of formation of arc and arc physics were discussed. Small versions of conventional TIG, MIG, and PAW techniques are developed for high quality precision arc welding with ultralow energy input. In this chapter, different types of high precision arc welding process will be discussed. This chapter also describes the high productivity arc welding processes like twin wire gas tungsten arc cladding, plasma cladding, and laser-arc hybrid welding processes. Results showed that a significant increase in deposition rate and high productivity can be achieved with the high productivity arc welding processes.


Weld Pool Cathode Spot Hybrid Welding Wire Feed Rate Plasma Cladding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abe N, Hayashi M (2002) Trends in laser arc combination welding methods. Weld Int 16(2):94–98CrossRefGoogle Scholar
  2. Alexandrov OA, Steklov OI, Alexeev AV (1993) Use of plasma arc welding process to combat hydrogen metallic disbonding of austenitic stainless steel claddings. Weld J 72(11):506–516Google Scholar
  3. Anderson JR (1985) Technical paper MS85-185, Society of Manufacturing Engineers, DearbornGoogle Scholar
  4. Anon (1997) Weld Met Fabr 65(10):30–32Google Scholar
  5. Choi DS, Lee SH, Shin BS (2001) Development of a direct metal freeform fabrication technique using co2 laser welding and milling technology. J Mater Process Technol 113:273–279CrossRefGoogle Scholar
  6. Colussi M, Fedeli G, Marini L, Carniato G (1994) In: Proceeding conference Eurojoin 2, Florence, 16–18 May, pp 73–83Google Scholar
  7. Eagar TW (1990) The physics of welding processes. In: Machida S (ed) Proceedings of 5th JWS international symposium on advanced technology in welding, materials processing and evaluation. Japan Welding Society, Tokyo, pp 11–16Google Scholar
  8. Horii T, Ishikawa M, Kirihara S, Miyamoto Y, Yamanaka N (2007) Development of freeform fabrication of metals by three dimensional micro-welding. Solid State Phenom 127:189–194CrossRefGoogle Scholar
  9. Horii T, Kirihara S, Miyamoto Y (2008) Freeform fabrication of Ti–Al alloys by 3D micro-welding. Intermetallics 16:1245–1249CrossRefGoogle Scholar
  10. Ian F (1997) Hot wire TIG weld cladding comes of age. Welding & Metal Fabrication, Weld Met Fabr 65(10):30–32Google Scholar
  11. Jeffus LF (1997) Welding: principles and applications, 6th edn. Cangage LearingGoogle Scholar
  12. Kah P (2012) Overview of the exploration status of laser-arc hybrid welding processes. Rev Adv Mater Sci 30(2):112–132MathSciNetGoogle Scholar
  13. Koshy P (1985) Alloy 625 weld cladding of wellheads and valves: review of dilution-control techniques and weld process development. In: Proceeding conference OTC’85, Offshore Technology Conference, Houston, vol. III, pp 145–153, 6–9 May 1985Google Scholar
  14. Kuo S (2002), Welding Metallurgy, Wiley Publisher, United StatesGoogle Scholar
  15. Lambert JA, Gilston (1990) Hot-wire GTAW for nuclear repairs. Weld J 69(9):45–52Google Scholar
  16. Liburdi J, Lowden P, Pilcher C (1989) Automated welding of turbine blades, ASME gas turbine and aeroengine congress and exposition, ASME Paper 89-GT-307, TorontoGoogle Scholar
  17. Lowden P, Pilcher C, Liburdi J (1991) Integrated weld automation for gas turbine blades, ASME gas turbine and aeroengine congress and exposition, ASME Paper 91-GT-159, Orlando, pp 3–6Google Scholar
  18. Lucas W (1994) Arc surfacing and cladding processes. Weld Met Fabr 62:55–62Google Scholar
  19. Lucas B (1997) FCAW, Multiwire and gas selection–techniques to enhance MIG productivity. Weld Met Fabr 65(5):10–12Google Scholar
  20. Messler RW (2004) Principles of Welding processes, physics, chemistry, and metallurgy. Wiley-vch verlag GmbH & co. KGaA, WeinheimGoogle Scholar
  21. Miami FL (1991) Welding processes, Welding handbook, AmericanWelding Society, FloridaGoogle Scholar
  22. Nandkarni SV (2005) Modern arc welding technology, 2nd edn. Oxford and IBH Publishing, New DelhiGoogle Scholar
  23. Olson DL (1993) Welding, brazing and soldering, Volume 6. ASM Handbook, ASM InternationalGoogle Scholar
  24. Ouyang J, Wang H, Kovacevic R (2002) Rapid prototyping of 5356-Aluminium alloy based on variable polarity gas tungsten arc welding: process control and microstructure. J Mater Manuf Process 17(1):103–124CrossRefGoogle Scholar
  25. Shinn BW, Farson DF, Denney PE (2005) Laser stabilisation of arc cathode spots in titanium welding. Science and Technology of Welding and Joining 10(4):475–481CrossRefGoogle Scholar
  26. Sun Z, Huang ZH (1998) Micro-PTA powder cladding on a hot work tool steel. Int J Mater Prod Technol 13(3–6):146–154Google Scholar
  27. Sun Z, Kuo M, Pan D (1999) Twin-wire gas tungsten arc cladding offers increased deposition rates. Weld J 78(10):61–64Google Scholar
  28. Terakubo M, Oh J, Kirihara S, Miyamoto Y, Matsuura K, Kudoh M (2007) Freeform fabrication of Ti-Ni and Ti-Fe intermetallic alloys by 3D micro welding. J Intermetallics 15:133–138CrossRefGoogle Scholar
  29. Tovar SR, Montañés MT, Antón JG (2011) Effect of the micro-plasma arc welding technique on the microstructure and pitting corrosion of AISI 316L stainless steels in heavy LiBr brines. Corros Sci 53:2598–2610CrossRefGoogle Scholar
  30. Tusek J (1996) Rasing arc welding productivity. Weld Rev Int 15(3):102–105Google Scholar
  31. Zhang YM, Li P, Chen Y, Male AT (2002) Automated System for welding-based rapid prototyping. Mechatronics 12:37–53CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  • N. Kishore Babu
    • 1
  • Mahesh Kumar Talari
    • 2
  • Sun Zheng
    • 1
  • Pan Dayou
    • 1
  • S. Jerome
    • 3
  • V. Muthupandi
    • 3
  1. 1.Joining Technology GroupSingapore Institute of Manufacturing Technology, Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
  2. 2.Universiti Teknologi MARAShah AlamMalaysia
  3. 3.Department of Metallurgical and Materials EngineeringNational Institute of TechnologyTiruchirapalliIndia

Personalised recommendations