Skip to main content

Arc Welding

  • Reference work entry
  • First Online:
Handbook of Manufacturing Engineering and Technology

Abstract

This book chapter deals with the basics of arc welding processes, heat source used for arc welding, different types of arc polarities, effect of shielding gases, and welding power sources necessary for arc welding. The fundamentals of formation of arc and arc physics were discussed. Small versions of conventional TIG, MIG, and PAW techniques are developed for high quality precision arc welding with ultralow energy input. In this chapter, different types of high precision arc welding process will be discussed. This chapter also describes the high productivity arc welding processes like twin wire gas tungsten arc cladding, plasma cladding, and laser-arc hybrid welding processes. Results showed that a significant increase in deposition rate and high productivity can be achieved with the high productivity arc welding processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe N, Hayashi M (2002) Trends in laser arc combination welding methods. Weld Int 16(2):94–98

    Article  Google Scholar 

  • Alexandrov OA, Steklov OI, Alexeev AV (1993) Use of plasma arc welding process to combat hydrogen metallic disbonding of austenitic stainless steel claddings. Weld J 72(11):506–516

    Google Scholar 

  • Anderson JR (1985) Technical paper MS85-185, Society of Manufacturing Engineers, Dearborn

    Google Scholar 

  • Anon (1997) Weld Met Fabr 65(10):30–32

    Google Scholar 

  • Choi DS, Lee SH, Shin BS (2001) Development of a direct metal freeform fabrication technique using co2 laser welding and milling technology. J Mater Process Technol 113:273–279

    Article  Google Scholar 

  • Colussi M, Fedeli G, Marini L, Carniato G (1994) In: Proceeding conference Eurojoin 2, Florence, 16–18 May, pp 73–83

    Google Scholar 

  • Eagar TW (1990) The physics of welding processes. In: Machida S (ed) Proceedings of 5th JWS international symposium on advanced technology in welding, materials processing and evaluation. Japan Welding Society, Tokyo, pp 11–16

    Google Scholar 

  • Horii T, Ishikawa M, Kirihara S, Miyamoto Y, Yamanaka N (2007) Development of freeform fabrication of metals by three dimensional micro-welding. Solid State Phenom 127:189–194

    Article  Google Scholar 

  • Horii T, Kirihara S, Miyamoto Y (2008) Freeform fabrication of Ti–Al alloys by 3D micro-welding. Intermetallics 16:1245–1249

    Article  Google Scholar 

  • Ian F (1997) Hot wire TIG weld cladding comes of age. Welding & Metal Fabrication, Weld Met Fabr 65(10):30–32

    Google Scholar 

  • Jeffus LF (1997) Welding: principles and applications, 6th edn. Cangage Learing

    Google Scholar 

  • Kah P (2012) Overview of the exploration status of laser-arc hybrid welding processes. Rev Adv Mater Sci 30(2):112–132

    MathSciNet  Google Scholar 

  • Koshy P (1985) Alloy 625 weld cladding of wellheads and valves: review of dilution-control techniques and weld process development. In: Proceeding conference OTC’85, Offshore Technology Conference, Houston, vol. III, pp 145–153, 6–9 May 1985

    Google Scholar 

  • Kuo S (2002), Welding Metallurgy, Wiley Publisher, United States

    Google Scholar 

  • Lambert JA, Gilston (1990) Hot-wire GTAW for nuclear repairs. Weld J 69(9):45–52

    Google Scholar 

  • Liburdi J, Lowden P, Pilcher C (1989) Automated welding of turbine blades, ASME gas turbine and aeroengine congress and exposition, ASME Paper 89-GT-307, Toronto

    Google Scholar 

  • Lowden P, Pilcher C, Liburdi J (1991) Integrated weld automation for gas turbine blades, ASME gas turbine and aeroengine congress and exposition, ASME Paper 91-GT-159, Orlando, pp 3–6

    Google Scholar 

  • Lucas W (1994) Arc surfacing and cladding processes. Weld Met Fabr 62:55–62

    Google Scholar 

  • Lucas B (1997) FCAW, Multiwire and gas selection–techniques to enhance MIG productivity. Weld Met Fabr 65(5):10–12

    Google Scholar 

  • Messler RW (2004) Principles of Welding processes, physics, chemistry, and metallurgy. Wiley-vch verlag GmbH & co. KGaA, Weinheim

    Google Scholar 

  • Miami FL (1991) Welding processes, Welding handbook, AmericanWelding Society, Florida

    Google Scholar 

  • Nandkarni SV (2005) Modern arc welding technology, 2nd edn. Oxford and IBH Publishing, New Delhi

    Google Scholar 

  • Olson DL (1993) Welding, brazing and soldering, Volume 6. ASM Handbook, ASM International

    Google Scholar 

  • Ouyang J, Wang H, Kovacevic R (2002) Rapid prototyping of 5356-Aluminium alloy based on variable polarity gas tungsten arc welding: process control and microstructure. J Mater Manuf Process 17(1):103–124

    Article  Google Scholar 

  • Shinn BW, Farson DF, Denney PE (2005) Laser stabilisation of arc cathode spots in titanium welding. Science and Technology of Welding and Joining 10(4):475–481

    Article  Google Scholar 

  • Sun Z, Huang ZH (1998) Micro-PTA powder cladding on a hot work tool steel. Int J Mater Prod Technol 13(3–6):146–154

    Google Scholar 

  • Sun Z, Kuo M, Pan D (1999) Twin-wire gas tungsten arc cladding offers increased deposition rates. Weld J 78(10):61–64

    Google Scholar 

  • Terakubo M, Oh J, Kirihara S, Miyamoto Y, Matsuura K, Kudoh M (2007) Freeform fabrication of Ti-Ni and Ti-Fe intermetallic alloys by 3D micro welding. J Intermetallics 15:133–138

    Article  Google Scholar 

  • Tovar SR, Montañés MT, Antón JG (2011) Effect of the micro-plasma arc welding technique on the microstructure and pitting corrosion of AISI 316L stainless steels in heavy LiBr brines. Corros Sci 53:2598–2610

    Article  Google Scholar 

  • Tusek J (1996) Rasing arc welding productivity. Weld Rev Int 15(3):102–105

    Google Scholar 

  • Zhang YM, Li P, Chen Y, Male AT (2002) Automated System for welding-based rapid prototyping. Mechatronics 12:37–53

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Kishore Babu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this entry

Cite this entry

Babu, N.K., Talari, M.K., Zheng, S., Dayou, P., Jerome, S., Muthupandi, V. (2015). Arc Welding. In: Nee, A. (eds) Handbook of Manufacturing Engineering and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-4670-4_53

Download citation

Publish with us

Policies and ethics